
KubeJS
This wiki is for KubeJS 6+, for Minecraft versions 1.19.2+. This wiki still is incomplete, so you may
fallback to 1.18.2 one, see KubeJS Legacy page.

Intro

FAQ
Features
Global

Events

List of Events
Recipes
Tags
Custom Items
Item modification
Custom Blocks
Block Modification
Custom Tiers
Worldgen

Examples
Other

Default Options
Changing Window Title and Icon
Loading Assets and Data
Changing Mod Display Names
KubeJS 6.1 Update

Addons

KubeJS UI

KubeJS Create
KubeJS Thermal
KubeJS Mekanism
KubeJS Immersive Engineering
KubeJS Blood Magic
KubeJS Tinkers Construct
PonderJS
LootJS
ProbeJS
KubeJS Additions
MoreJS
PowerfulJS
beJS
ScreenJS
KubeJS REI Runtime
KubeJS Botany Pots
KubeJS Ars Nouveau
KubeJS ProjectE
KubeJS Powah
KJSPKG
KubeJS Offline Documentation
KubeJS Farmers Delight
KubeJS Industrial Foregoing

Intro

Intro

FAQ
What does this mod do?
This mod lets you create scripts in JavaScript language to manage your server, add new blocks and
items, change recipes, add custom handlers for quest mods and more!

How to use it?
Run the game with mod installed once. It should generate kubejs folder in your minecraft directory
with example scripts and README.txt. Read that!

Here's a video tutorial for 1.19.2:

https://www.youtube.com/embed/xhJJbNJjics

I don't know JavaScript
There's examples and pre-made scripts here. And you can always ask in discord support channel
for help with scripts, but be specific.

Can I reload scripts?
Yes, use /reload to reload server_scripts/ , F3 + T to reload client_scripts/ and /kubejs reload
startup_scripts to reload startup_scripts/ . If you don't care about reloading recipes but are testing
some world interaction event, you can run /kubejs reload server_scripts . Note: Not everything is
reloadable. Some things require you to restart game, some only world, some work on fly. Reloading
startup scripts is not recommended, but if you only have event listeners, it shouldn't be a problem.

What mod recipes does it support / is mod X supported?
If the mod uses datapack recipes, then it's supported by default. Some more complicated mods
require addon mods, but in theory, still would work with datapack recipes. See Recipes and Addons
sections for more info.

What features does this mod have?

See list of all Features.

https://www.youtube.com/embed/xhJJbNJjics
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs/chapter/addons
https://mods.latvian.dev/books/kubejs/page/features

How does this mod work?
It uses a fork of Rhino, a JavaScript engine by Mozilla to convert JS code to Java classes at runtime.
KubeJS wraps minecraft classes and adds utilities to simplify that a lot and remove need for
mappings. Architectury lets nearly the same source code be compiled for both Forge and Fabric
making porting extremely easy.

Ok, but what if it.. doesn't work?

You can report issues here.

I have more questions/suggestions!

If wiki didn't have the answer for what you were looking for, you can join the Discord server and
ask for help on #support channel!

Image not found or type unknown

Website: https://kubejs.com/

Source and issue tracker: https://github.com/KubeJS-Mods/KubeJS

Download: https://www.curseforge.com/minecraft/mc-mods/kubejs

Anything below 1.18 is no longer supported!

https://www.curseforge.com/minecraft/mc-mods/architectury-api
https://github.com/KubeJS-Mods/KubeJS/issues
https://discord.gg/lat
https://discord.gg/lat
https://discord.gg/lat
https://kubejs.com/
https://github.com/KubeJS-Mods/KubeJS
https://www.curseforge.com/minecraft/mc-mods/kubejs

Intro

Features
Here's a list of all documented (and sometimes undocumented) features that I can remember:

[Full list of events]
Editing Recipes
Editing Tags
Adding New Items
Adding New Blocks
Default Options
Changing Window Title and Icon
Changing Mod Display Names
Loading Assets and Data
Modify Items
Modify Blocks
Adding Fluids
Worldgen
Chat event
Block placement event
Item right-click event
And a bunch more that I forgot...

https://mods.latvian.dev/books/kubejs/page/list-of-events
https://mods.latvian.dev/books/kubejs/page/recipes
https://mods.latvian.dev/books/kubejs/page/tags
https://mods.latvian.dev/books/kubejs/page/custom-items
https://wiki.latvian.dev/books/kubejs/page/custom-blocks
https://mods.latvian.dev/books/kubejs/page/default-options
https://mods.latvian.dev/books/kubejs/page/changing-window-title-and-icon
https://wiki.latvian.dev/books/kubejs/page/changing-mod-display-names
https://mods.latvian.dev/books/kubejs/page/loading-assets-and-data
https://wiki.latvian.dev/books/kubejs/page/item-modification
https://mods.latvian.dev/books/kubejs/page/block-modification
https://wiki.latvian.dev/books/kubejs/page/worldgen

Intro

Global
Primitive prototype additions

String#namespace : String - namespace part of namespaced string, aka of
"minecraft:oak_planks" it's "minecraft". Defaults to "minecraft" if there's no : .
String#path : String - path part of namespaced string, aka of "minecraft:oak_planks" it's
"oak_planks"

Constants
SECOND : Number = 1000
MINUTE : Number = 60000 (60 * SECOND)
HOUR : Number = 3600000 (60 * MINUTE)

Objects
global : Map<String, Object>
console : Console

Classes
Platform
ResourceLocation
Utils
Java
Text
UUID
JsonIO
Block
Item
Ingredient
IngredientHelper
NBT
NBTIO
Direction
Facing
AABB
Fluid
Color

BlockStatePredicate

Wrapped Classes
Name Class

JavaMath java.lang.Math

Blocks net.minecraft.world.level.block.Blocks

Items net.minecraft.world.item.Items

Stats net.minecraft.stats.Stats

DecorationGenerationStep net.minecraft.world.level.levelgen.GenerationStep.Decorat
ion

CarvingGenerationStep net.minecraft.world.level.levelgen.GenerationStep.Carving

BlockPos net.minecraft.core.BlockPos

DamageSource net.minecraft.world.damagesource.DamageSource

BlockProperties net.minecraft.world.level.block.state.properties.BlockState
Properties

Vec3 , Vec3d net.minecraft.world.phys.Vec3

Vec3i net.minecraft.core.Vec3i

Events

Events

List of Events
This is a list of all events. It's possible that not all events are listed here, but this list will be updated
regularly.

Click on event ID to open its class and see information, fields, and methods.

Type descriptions:

Startup: scripts go into the /kubejs/startup_scripts/ folder. Startup scripts run once, at
startup, on both the client and server. Most events that require registering or modifying
something at game start (like custom blocks, items, and fluids) will be Startup events.
Server: scripts go into the /kubejs/server_scripts/ folder. It will be reloaded when you run
/reload command. Server events are always accessible, even in single-player worlds. Most
events that make changes to the world while the game is running (such as breaking
blocks, teleporting players, or adding recipes) will go here.
Server Startup: same as Server, and the event will be fired at least once when the
server loads.
Client: scripts go into the /kubejs/client_scripts/ folder. Will be reloaded when you press
F3+T . Most changes that are per-client (such as resource packs, Painter, and JEI) are
client events.
Client Startup: Same as Client, and the event will be fired at least once when the client
loads.

Base KubeJS Events
Folder Method Cancellable

/startup_scripts/ StartupEvents.init (link) ❌

/startup_scripts/ StartupEvents.postInit (link) ❌

Folder Method Cancellable

/startup_scripts/ StartupEvents.registry (fluid)
StartupEvents.registry (block)
StartupEvents.registry (item)
StartupEvents.registry (enchantment)
StartupEvents.registry (mob effects)
StartupEvents.registry (sound event)
StartupEvents.registry (block entity

type)
StartupEvents.registry (potion)
StartupEvents.registry (particle type)
StartupEvents.registry (painting variant)
StartupEvents.registry (custom stat)
StartupEvents.registry (point of interest

type)
StartupEvents.registry (villager type)
StartupEvents.registry (villager

profession)

❌

/client_scripts/ ClientEvents.highPriorityAssets (link) ❌

/client_scripts/ ClientEvents.init (link) ❌

/client_scripts/ ClientEvents.loggedIn (link) ❌

/client_scripts/ ClientEvents.loggedOut (link) ❌

/client_scripts/ ClientEvents.tick (link) ❌

/client_scripts/ ClientEvents.painterUpdated (link) ❌

/client_scripts/ ClientEvents.leftDebugInfo (link) ❌

/client_scripts/ ClientEvents.rightDebugInfo (link) ❌

/client_scripts/ ClientEvents.paintScreen (link) ❌

/server_scripts/ ServerEvents.lowPriorityData (link) ❌

/server_scripts/ ServerEvents.highPriorityData (link) ❌

/server_scripts/ ServerEvents.loaded (link) ❌

https://wiki.latvian.dev/books/kubejs/page/custom-blocks
https://mods.latvian.dev/books/kubejs/page/custom-items

Folder Method Cancellable

/server_scripts/ ServerEvents.unloaded (link) ❌

/server_scripts/ ServerEvents.tick (link) ❌

/server_scripts/ ServerEvents.tags (link) ❌

/server_scripts/ ServerEvents.commandRegistry (link) ❌

/server_scripts/ ServerEvents.command (link) ✅

/server_scripts/ ServerEvents.customCommand (link) ✅

/server_scripts/ ServerEvents.recipes (link) ❌

/server_scripts/ ServerEvents.afterRecipes (link) ❌

/server_scripts/ ServerEvents.specialRecipeSerializers
(link)

❌

/server_scripts/ ServerEvents.compostableRecipes (link) ❌

/server_scripts/ ServerEvents.recipeTypeRegistry (link) ❌

/server_scripts/ ServerEvents.genericLootTables (link) ❌

/server_scripts/ ServerEvents.blockLootTables (link) ❌

/server_scripts/ ServerEvents.entityLootTables (link) ❌

/server_scripts/ ServerEvents.giftLootTables (link) ❌

/server_scripts/ ServerEvents.fishingLootTables (link) ❌

/server_scripts/ ServerEvents.chestLootTables (link) ❌

/server_scripts/ LevelEvents.loaded (link) ❌

/server_scripts/ LevelEvents.unloaded (link) ❌

/server_scripts/ LevelEvents.tick (link) ❌

https://mods.latvian.dev/books/kubejs/page/tags

Folder Method Cancellable

/server_scripts/ LevelEvents.beforeExplosion (link) ✅

/server_scripts/ LevelEvents.afterExplosion (link) ❌

/startup_scripts/ WorldgenEvents.add (link) ❌

/startup_scripts/ WorldgenEvents.remove (link) ❌

/client_scripts/ NetworkEvents.fromServer (link) ✅

/server_scripts/ NetworkEvents.fromClient (link) ✅

/startup_scripts/ ItemEvents.modification (link) ❌

/startup_scripts/ ItemEvents.toolTierRegistry (link) ❌

/startup_scripts/ ItemEvents.armorTierRegistry (link) ❌

/server_scripts/ ItemEvents.rightClicked (link) ✅

/server_scripts/ ItemEvents.canPickUp (link) ✅

/server_scripts/ ItemEvents.pickedUp (link) ❌

/server_scripts/ ItemEvents.dropped (link) ✅

/server_scripts/ ItemEvents.entityInteracted (link) ✅

/server_scripts/ ItemEvents.crafted (link) ❌

/server_scripts/ ItemEvents.smelted (link) ❌

/server_scripts/ ItemEvents.foodEaten (link) ✅

/client_scripts/ ItemEvents.tooltip (link) ❌

/startup_scripts/ ItemEvents.modelProperties (link) ❌

/client_scripts/ ItemEvents.clientRightClicked (link) ❌

/client_scripts/ ItemEvents.clientLeftClicked (link) ❌

https://wiki.latvian.dev/books/kubejs/page/custom-tiers#bkmrk-tool-tiers
https://wiki.latvian.dev/books/kubejs/page/custom-tiers#bkmrk-armour-tiers

Folder Method Cancellable

/server_scripts/ ItemEvents.firstRightClicked (link) ❌

/server_scripts/ ItemEvents.firstLeftClicked (link) ❌

/startup_scripts/ BlockEvents.modification (link) ❌

/server_scripts/ BlockEvents.rightClicked (link) ✅

/server_scripts/ BlockEvents.leftClicked (link) ✅

/server_scripts/ BlockEvents.placed (link) ✅

/server_scripts/ BlockEvents.broken (link) ✅

/server_scripts/ BlockEvents.detectorChanged (link) ❌

/server_scripts/ BlockEvents.detectorPowered (link) ❌

/server_scripts/ BlockEvents.detectorUnpowered (link) ❌

/server_scripts/ BlockEvents.farmlandTrampled (link) ❌

/server_scripts/ EntityEvents.death (link) ✅

/server_scripts/ EntityEvents.hurt (link) ✅

/server_scripts/ EntityEvents.checkSpawn (link) ✅

/server_scripts/ EntityEvents.spawned (link) ✅

/server_scripts/ PlayerEvents.loggedIn (link) ❌

/server_scripts/ PlayerEvents.loggedOut (link) ❌

/server_scripts/ PlayerEvents.respawned (link) ❌

/server_scripts/ PlayerEvents.tick (link) ❌

/server_scripts/ PlayerEvents.chat (link) ✅

/server_scripts/ PlayerEvents.decorateChat (link) ❌

Folder Method Cancellable

/server_scripts/ PlayerEvents.advancement (link) ✅

/server_scripts/ PlayerEvents.inventoryOpened (link) ❌

/server_scripts/ PlayerEvents.inventoryClosed (link) ❌

/server_scripts/ PlayerEvents.inventoryChanged (link) ❌

/server_scripts/ PlayerEvents.chestOpened (link) ❌

/server_scripts/ PlayerEvents.chestClosed (link) ❌

Mod Compatibility

Just Enough Items (JEI)

Folder Method Cancellable

/client_scripts/ JEIEvents.subtypes (source) ❌

/client_scripts/ JEIEvents.hideItems (source) ❌

/client_scripts/ JEIEvents.hideFluids (source) ❌

/client_scripts/ JEIEvents.hideCustom (source) ❌

/client_scripts/ JEIEvents.removeCategories (source) ❌

/client_scripts/ JEIEvents.removeRecipes (source) ❌

/client_scripts/ JEIEvents.addItems (source) ❌

/client_scripts/ JEIEvents.addFluids (source) ❌

/client_scripts/ JEIEvents.information (source) ❌

Roughly Enough Items (REI)

These events are enabled when certain other mods are present.

https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/JEISubtypesEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideCustomJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/RemoveJEICategoriesEvent.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/RemoveJEIRecipesEvent.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/AddJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/AddJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/InformationJEIEventJS.java

Folder Method Cancellable

/client_scripts/ REIEvents.hide (source) ❌

/client_scripts/ REIEvents.add (source) ❌

/client_scripts/ REIEvents.information (source) ❌

/client_scripts/ REIEvents.removeCategories (source) ❌

/client_scripts/ REIEvents.groupEntries (source) ❌

GameStages

Folder Method Cancellable

/server_scripts/ GameStageEvents.stageAdded (source) ❌

/server_scripts/ GameStageEvents.stageRemoved (source
)

❌

https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/HideREIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/AddREIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/InformationREIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/RemoveREICategoryEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/GroupREIEntriesEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/gamestages/GameStageEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/gamestages/GameStageEventJS.java

Events

Recipes

Contents
How Recipes & Callbacks Work
Adding Recipes

Shaped
Shapeless
Smithing
Smelting & other Cooking
Stonecutting
Custom (JSON)

Removing Recipes
Modifying & Replacing Recipes
Helpers, Efficiency and Advanced Ingredients (a.k.a. "how to avoid repeating yourself")

Recipes, Callbacks, and You ↑
The recipe event can be used to add, remove, or replace recipes.

Any script that modifies recipes should be placed in the kubejs/server_scripts folder, and can be
reloaded at any time with /reload .

Any modifications to the recipes should be done within the context of a recipes event. This means
that we need to register an "event listener" for the ServerEvents.recipes event, and give it some code
to execute whenever the game is ready to modify recipes. Here's how we tell KubeJS to execute
some code whenever it's recipe time:

This page is still under development. It is not complete, and subject to change at any time.

The recipe event is a server event.

In the next sections, you can see what to put inside your callback.

Adding Recipes ↑

The following is all code that should be placed inside your recipe callback.

Shaped↑
Shaped recipes are added with the event.shaped() method. Shaped recipes must have their
ingredients in a specific order and shape in order to match the player's input. The arguments to
event.shaped() are:

1. The output item, which can have a count of 1-64
2. An array (max length 3) of crafting table rows, represented as strings (max length 3).

Spaces represent slots with no item, and letters represent items. The letters don't have to
mean anything; you explain what they mean in the next argument.

3. An object mapping the letters to Items, like {letter: item} . Input items must have a count
of 1.

If you want to force strict positions on the crafting grid or disable mirroring, see Methods of Custom
Recipes.

/*
 * ServerEvents.recipes() is a function that accepts another function,
 * called the "callback", as a parameter. The callback gets run when the
 * server is working on recipes, and then we can make our own changes.
 * When the callback runs, it is also known as the event "firing".
*/

ServerEvents.recipes(event => { //listen for the "recipes" server event.
 // You can replace `event` with any name you like, as
 // long as you change it inside the callback too!

 // This part, inside the curly braces, is the callback.
 // You can modify as many recipes as you like in here,
 // without needing to use ServerEvents.recipes() again.

 console.log('Hello! The recipe event has fired!')
})

Shapeless↑
Shapeless recipes are added with the event.shapeless() method. Players can put ingredients of
shapeless recipes anywhere on the grid and it will still craft. The arguments to event.shapeless() are:

1. The output item
2. An array of input items. The total input items' count must be 9 at most.

Smithing↑
Smithing recipes have 2 inputs and one output and are added with the event.smithing() method.
Smithing recipes are crafted in the smithing table.

Smelting & Cooking↑
Cooking recipes are all very similar, accepting one input (a single item) and giving one output
(which can be up to 64 of the same item). The fuel cannot be changed in this recipe event and
should be done with tags instead.

event.shaped('3x minecraft:stone', [// arg 1: output
 'A B',
 ' C ', // arg 2: the shape (array of strings)
 'B A'
], {
 A: 'minecraft:andesite',
 B: 'minecraft:diorite', //arg 3: the mapping object
 C: 'minecraft:granite'
 }
)

event.shapeless('3x minecraft:dandelion', [// arg 1: output
 'minecraft:bone_meal',
 'minecraft:yellow_dye', 	//arg 2: the array of inputs
 '3x minecraft:ender_pearl'
])

event.smithing(
 'minecraft:netherite', // arg 1: output
 'minecraft:iron_ingot', // arg 2: the item to be upgraded
 'minecraft:black_dye' // arg 3: the upgrade item
)

Smelting recipes are added with event.smelting() , and require the regular Furnace.
Blasting recipes are added with event.blasting() , and require the Blast Furnace.
Smoking recipes are added with event.smoking() , and require the Smoker.
Campfire cooking recipes are added with event.campfireCooking() , and require the Campfire.

Stonecutting↑
Like the cooking recipes, stonecutting recipes are very simple, with one input (a single item) and
one output (which can be up to 64 of the same item). They are added with the event.stonecutting()
method.

Custom/Modded JSON recipes↑
If a mod supports Datapack recipes, you can add recipes for it without any addon mod support!
Unfortunately, we can't give specific advice because every mod's layout is different, but if a mod
has a GitHub (most do!) or other source code, you can find the relevant JSON files in
/src/generated/resources/data/<modname>/recipes/ . Otherwise, you may be able to find it by unzipping
the mod's .jar file.

Here's an example of adding a Farmer's Delight cutting board recipe, which defines an input,
output, and tool taken straight from their GitHub. Obviously, you can substitute any of the items
here to make your own recipe!

// Cook 1 stone into 3 gravel in a Furnace:
event.smelting('3x minecraft:gravel', 'minecraft:stone')

// Blast 1 iron ingot into 10 nuggets in a Blast Furnace:
event.blasting('10x minecraft:iron_nugget', 'minecraft:iron_ingot')

// Smoke glass into tinted glass in the Smoker:
event.smoking('minecraft:tinted_glass', 'minecraft:glass')

// Burn sticks into torches on the Campfire:
event.campfireCooking('minecraft:torch', 'minecraft:stick')

//allow cutting 3 sticks from any plank on the stonecutter
event.stonecutting('3x minecraft:stick', '#minecraft:planks')

// Slice cake on a cutting board!
event.custom({
 type: 'farmersdelight:cutting',
 ingredients: [

https://github.com/vectorwing/FarmersDelight/blob/1.18.2/src/generated/resources/data/farmersdelight/recipes/cutting/cake.json

Here's another example of event.custom() for making a Tinkers' Construct alloying recipe, which
defines inputs, an output, and a temperature straight from their GitHub (conditions removed):

Removing Recipes↑

Removing recipes can be done with the event.remove() method. It accepts 1 argument: a Recipe
Filter. A filter is a set of properties that determine which recipe(s) to select. There are many
conditions with which you can select a recipe:

by output item {output: '<item_id>'}
by input item(s) {input: '<item_id>'}
by mod {mod: '<mod_id>'}
by the unique recipe ID {id: '<recipe_id>'}
combinations of the above:

Require ALL conditions to be met: {condition1: 'value', condition2: 'value2'}
Require ANY of the conditions to be met: [{condition_a: 'true'}, {condition_b: 'true'}]
Require the condition NOT be met: {not: {condition: 'requirement'}}

All of the following can go in your recipe callback, as normal:

 { item: 'minecraft:cake' }
],
 tool: { tag: 'forge:tools/knives' },
 result: [
 { item: 'farmersdelight:cake_slice', count: 7 }
]
})

// Adding the Molten Electrum alloying recipe from Tinkers' Construct
event.custom({
 type: 'tconstruct:alloy',
 inputs: [
 { tag: 'forge:molten_gold', amount: 90 },
 { tag: 'forge:molten_silver', amount: 90 }
],
 result: { fluid: 'tconstruct:molten_electrum', amount: 180 },
 temperature: 760
})

https://github.com/SlimeKnights/TinkersConstruct/blob/1.18.2/src/generated/resources/data/tconstruct/recipes/smeltery/alloys/molten_electrum.json

To find a recipe's unique ID, turn on advanced tooltips using the F3 + H keys (you will see an
announcement in chat), then hover over the [+] symbol (if using REI) or the output (if using JEI).

Modifying & Replacing Recipes ↑
You can bulk-modify supported recipes using event.replaceInput() and event.replaceOutput() . They
each take 3 arguments:

// A blank condition removes all recipes (obviously not recommended):
event.remove({})

// Remove all recipes where output is stone pickaxe:
event.remove({ output: 'minecraft:stone_pickaxe' })

// Remove all recipes where output has the Wool tag:
event.remove({ output: '#minecraft:wool' })

// Remove all recipes where any input has the Redstone Dust tag:
event.remove({ input: '#forge:dusts/redstone' })

// Remove all recipes from Farmer's Delight:
event.remove({ mod: 'farmersdelight' })

// Remove all campfire cooking recipes:
event.remove({ type: 'minecraft:campfire_cooking' })

// Remove all recipes that grant stone EXCEPT smelting recipes:
event.remove({ not: { type: 'minecraft:smelting' }, output: 'stone' })

// Remove recipes that output cooked chicken AND are cooked on a campfire:
event.remove({ output: 'minecraft:cooked_chicken', type: 'minecraft:campfire_cooking' })

// Remove any blasting OR smelting recipes that output minecraft:iron_ingot:
event.remove([{ type: 'minecraft:smelting', output: 'minecraft:iron_ingot' }, { type: 'minecraft:blasting', output:
'minecraft:iron_ingot' }])

// Remove a recipe by ID. in this case, data/minecraft/recipes/glowstone.json:
// Note: Recipe ID and output are different!
event.remove({ id: 'minecraft:glowstone' })

https://www.curseforge.com/minecraft/mc-mods/roughly-enough-items
https://www.curseforge.com/minecraft/mc-mods/jei

1. A filter, similar to the ones used when removing recipes
2. The ingredient to replace
3. The ingredient to replace it with (can be a tag)

For example, let's say you were removing all sticks and wanted to make people craft things with
saplings instead. Inside your callback you would put:

Advanced Techniques ↑
Helper functions ↑
Are you making a lot of similar recipes? Feel like you're typing the same text over and over? Try
helper functions! Helper functions will perform repeated actions in much less space by taking in
only the parts that are relevant, then doing the repetitive stuff for you!

Here's a helper function, which allows you to make items by crafting a flower pot around the item
you specify.

event.replaceInput(
 { input: 'minecraft:stick' }, // Arg 1: the filter
 'minecraft:stick', // Arg 2: the item to replace
 '#minecraft:saplings' // Arg 3: the item to replace it with
 // Note: tagged fluid ingredients do not work on Fabric, but tagged items do.
)

ServerEvents.recipes(event => {
 let potting = (output, pottedInput) => {
 event.shaped(output, [
 'BIB',
 ' B '
], {
 B: 'minecraft:brick',
 I: pottedInput
 })
 }

 //Now we can make many 'potting' recipes without typing that huge block over and over!
 potting('kubejs:potted_snowball', 'minecraft:snowball')
 potting('kubejs:potted_lava', 'minecraft:lava_bucket')

Looping ↑
In addition to helper functions, you can also loop through an array to perform an action on every
item in the array.

 potting('minecraft:blast_furnace', 'minecraft:furnace')
})

Events

Tags

The tags event takes an extra parameter that determines which registry it's adding tags to. You will
generally only need item, block, and fluid tags. However, it does support adding tags to any
registry, including other mods ones. For mod ones make sure to include the namespace!

The tag event is a server event.

Tags are per item/block/fluid/entity_type and as such cannot be added based on things like
NBT data!

// Listen to item tag event
ServerEvents.tags('item', event => {
 // Get the #forge:cobblestone tag collection and add Diamond Ore to it
 event.add('forge:cobblestone', 'minecraft:diamond_ore')

 // Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
 event.remove('forge:cobblestone', 'minecraft:mossy_cobblestone')

 // Get #forge:ingots/copper tag and remove all entries from it
 event.removeAll('forge:ingots/copper')

 // Required for FTB Quests to check item NBT
 event.add('itemfilters:check_nbt', 'some_item:that_has_nbt_types')

 // You can create new tags the same way you add to existing, just give it a name
 event.add('forge:completely_new_tag', 'minecraft:clay_ball')

 // It supports adding tags to tags as well. Just prefix the second tag with #
 event.add('c:stones', '#forge:stone')

 // Removes all tags from this entry
 event.removeAllTagsFrom('minecraft:stick')

 // Add all items from the forge:stone tag to the c:stone tag, unless the id contains diorite

 const stones = event.get('forge:stone').getObjectIds()
 const blacklist = Ingredient.of(/.*diorite.*/)
 stones.forEach(stone => {
 if (!blacklist.test(stone)) event.add('c:stone', stone)
 })
})

Recipes use item tags, not block or fluid tags. Even if items representing those are blocks,
like minecraft:cobblestone , it still uses an item tag for recipes.

// Listen to the block tag event
ServerEvents.tags('block', event => {
 // Add tall grass to the climbable tag. This does make it climbable!
 event.add('minecraft:climbable', 'minecraft:tall_grass')
})

Events

Custom Items

Custom items are created in a startup script. They cannot be reloaded without restarting the game.
The event is not cancellable.

Valid item types:

basic (this is the default)
sword
pickaxe
axe
shovel
shears
hoe

The custom item event is a startup event.

// Listen to item registry event
StartupEvents.registry('item', e => {
 // The texture for this item has to be placed in kubejs/assets/kubejs/textures/item/test_item.png
 // If you want a custom item model, you can create one in Blockbench and put it in
kubejs/assets/kubejs/models/item/test_item.json
 e.create('test_item')

 // If you want to specify a different texture location you can do that too, like this:
 e.create('test_item_1').texture('mobbo:item/lava') // This texture would be located at
kubejs/assets/mobbo/textures/item/lava.png

 // You can chain builder methods as much as you like
 e.create('test_item_2').maxStackSize(16).glow(true)

 // You can specify item type as 2nd argument in create(), some types have different available methods
 e.create('custom_sword', 'sword').tier('diamond').attackDamageBaseline(10.0)
})

helmet
chestplate
leggings
boots

Other methods item builder supports: [you can chain these methods after create()]

maxStackSize(size)
displayName(name)
unstackable()
maxDamage(damage) This is the item's durability, not actual weapon damage.
burnTime(ticks)
containerItem(item_id)
rarity('rarity')
tool(type, level)
glow(true/false)
tooltip(text...)
group('group_id')
color(index, colorHex)
texture(customTextureLocation)
parentModel(customParentModelLocation)
food(foodBuilder => ...) For full syntax see below

Methods available if you use a tool type ('sword' , 'pickaxe' , 'axe' , 'shovel' or 'hoe'):

tier('toolTier')

modifyTier(tier => ...) Same syntax as custom tool tier, see Custom Tiers
attackDamageBaseline(damage) You only want to modify this if you are creating a custom
weapon such as Spear, Battleaxe, etc.
attackDamageBonus(damage)
speedBaseline(speed) Same as attackDamageBaseline, only modify for custom weapon
types
speed(speed)

Default available tool tiers:

wood
stone
iron
gold
diamond
netherite

Methods available if you use an armour type ('helmet', 'chestplate', 'leggings' or 'boots'):

https://mods.latvian.dev/books/kubejs/page/custom-tiers

tier('armorTier')

modifyTier(tier => ...) Same syntax as custom armor tier, see Custom Tiers

Default available armor tiers:

leather
chainmail
iron
gold
diamond
turtle
netherite

Vanilla group/creative tab IDs:

search
buildingBlocks
decorations
redstone
transportation
misc
food
tools
combat
brewing

Custom Foods
StartupEvents.registry('item', event => {
	event.create('magic_steak').food(food => {
		food
 		.hunger(6)
 		.saturation(6)//This value does not directly translate to saturation points gained
 		//The real value can be assumed to be:
 		//min(hunger * saturation * 2 + saturation, foodAmountAfterEating)
 		.effect('speed', 600, 0, 1)

https://mods.latvian.dev/books/kubejs/page/custom-tiers

 		.removeEffect('poison')
 		.alwaysEdible()//Like golden apples
 		.fastToEat()//Like dried kelp
 		.meat()//Dogs are willing to eat it
 		.eaten(ctx => {//runs code upon consumption
 		ctx.player.tell(Text.gold('Yummy Yummy!'))
 		//If you want to modify this code then you need to restart the game.
 		//However, if you make this code call a global startup function
 		//and place the function *outside* of an event handler
 		//then you may use the command:
 		// /kubejs reload startup_scripts
 		//to reload the function instantly.
 		//See example below
 	})
	})

 event.create('magicer_steak').unstackable().food(food => {
 food
 .hunger(7)
 .saturation(7)
 // This references the function below instead of having code directly, so it is reloadable!
 .eaten(ctx => global.myAwesomeReloadableFunction(ctx))
 })
})

global.myAwesomeReloadableFunction = ctx => {
 ctx.player.tell('Hello there!')
 ctx.player.tell(Text.of('Change me then reload with ').append(Text.red('/kubejs reload
startup_scripts')).append(' to see your changes!'))
}

Events

Item modification

ItemEvents.modification is a startup script event used to modify various properties of existing items.

Available properties:

Property Value Type Description

maxStackSize int Sets the maximum stack size for
items. Default is 64 for most items.

maxDamage int Sets the maximum damage an item
can take before it is broken.

craftingRemainder Item Sets the item left behind in the
crafting grid when this item is used as
a crafting ingredient (like milk buckets
in the cake recipe). Most items do not
have one.

Item modification is a startup event.

ItemEvents.modification(event => {
 event.modify('minecraft:ender_pearl', item => {
 item.maxStackSize = 64
 item.fireResistant = true
 item.rarity = "UNCOMMON"
 })
 event.modify('minecraft:ancient_debris', item => {
 item.rarity = "RARE"
 item.burnTime = 16000
 })
 event.modify('minecraft:turtle_helmet', item => {
 item.rarity = "EPIC"
 item.maxDamage = 481
 item.craftingRemainder = Item.of('minecraft:scute').item
 })
})

Property Value Type Description

fireResistant boolean If this item burns in fire and lava. Most
items are false by default, but Ancient
Debris and Netherite things are not.

rarity Rarity Sets the items rarity. This is mainly
used for the name colour. COMMON
by default. Nether Stars and Elytra
are UNCOMMON, Golden Apples are
RARE and Enchanted Golden Apples
are EPIC.

burnTime int Sets the burn time (in ticks) in a
regular furnace for this item. Note
that Smokers and Blast Furnaces burn
fuel twice as fast. Coal is 1600.

foodProperties FoodProperties Sets the items food properties to the
provided properties. Can be null to
remove food properties.

foodProperties Consumer<FoodBuilder> Sets the properties according to the
consumer. See below for more info.

digSpeed float Sets the items digging speed to the
number provided. See table below for
defaults.

tier Consumer<MutableToolTier> Currently BROKEN! Sets the tools tier
according to the consumer. See below
for more info.

attackDamage double Sets the attack damage of this item.

attackSpeed double Sets the attack speed of this item

armorProtection double Sets the armor protection for this
item. 20 is a full armour bar.

armorToughness double Adds an armor toughness bonus.

armorKnockbackResistance double Add an armor knockback resistance
bonus. Can be negative. 1 is full
knockback resistance.

Tool defaults

https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-food
https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-tier
https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-tier

Tier level maxDamage digSpeed attackDamage
(this is a bonus
modified by the
tool type value,
not the final
value)

enchantmentVa
lue

Wood 0 59 2 0 15

Stone 1 131 4 1 5

Iron 2 250 6 2 14

Diamond 3 1561 8 3 10

Gold 0 32 12 0 22

Netherite 4 2031 9 4 15

Armor defaults
All boxes with multiple values are formatted [head, chest, legs, feet]. Boxes with single values are
the same for every piece.

Tier maxDamage armourProtection armorToughness armorKnockbackRe
sistance

Leather [65, 75, 80, 55] [1, 2, 3, 1] 0 0

Chain [195, 225, 240, 165] [1, 4, 5, 2] 0 0

Iron [195, 225, 240, 165] [2, 5, 6, 2] 0 0

Gold [91 ,105, 112, 77] [1, 3, 5, 2] 0 0

Diamond [429, 495, 528, 363] [3, 6, 8, 3] 2 0

Turtle (only has
helmet)

[325, nil, nil. nil] [2, nil, nil, nil] 0 0

Netherite [481, 555, 592, 407] [3, 6, 8, 3] 3 0.1

Elytra (not actually
armor)

[nil, 432, nil, nil] 0 0 0

Tier

Broken at the moment! https://github.com/KubeJS-Mods/KubeJS/issues/662. Use the non tier
methods instead.

https://github.com/KubeJS-Mods/KubeJS/issues/662

Tools

Property Value Type Description

uses int The maximum damage before this
tool breaks. Identical to maxDamage.

speed float The digging speed of this tool.

attackDamageBonus float The bonus attack damage of this tool.

level int The mining level of this tool.

enchantmentValue int The enchanting power of this tool. The
higher this is, the better the
enchantments at an Enchanting Table
are.

repairIngredient Ingredient The material used to repair this tool in
an anvil.

Armor
Doesnt actually exist/work at the moment. Sorry.

Food

ItemEvents.modification(event => {
 event.modify('golden_sword', item => {
 item.tier = tier => {
 tier.speed = 12
 tier.attackDamageBonus = 10
 tier.repairIngredient = '#forge:storage_blocks/gold'
 tier.level = 3
 }
 })
 event.modify('wooden_sword', item => {
 item.tier = tier => {
 tier.enchantmentValue = 30
 }
 })
})

ItemEvents.modification(event => {
 event.modify('minecraft:diamond', item => {

Method Parameters Description

hunger int h Sets the hunger restored when this
item is eaten

saturation float s Sets the saturation mulitplier when
this food is eaten. This is not the final
value, it goes through some
complicated maths first

meat boolean flag (optional, true by
default)

Sets if this item is considered meat.
Meat can be fed to wolves to heal
them.

alwaysEdible boolean flag (optional, true by
default)

If this item can be eaten even if your
food bar is full. Chorus Fruit has this
true by default.

fastToEat boolean flag (optional, true by
default)

If this item is fast to eat, like Dried
Kelp.

effect ResourceLocation mobEffectId, int
duration, int amplifier, float
probability

Adds an effect to the entity who eats
this, like a Golden Apple

removeEffect MobEffect mobEffect Removes the effect from the entity
who eats this, like Honey Bottles
(poison).

eaten Consumer<FoodEatenEventJS> e BROKEN! Use ItemEvents.foodEaten
in server scripts instead.

 item.foodProperties = food => {
 food.hunger(2)
 food.saturation(3)
 food.fastToEat(true)
 food.eaten(e => e.player.tell('you ate')) // this is broken, use ItemEvents.foodEaten instead.
 }
 })

 event.modify('pumpkin_pie', item => {
 item.foodProperties = null // make pumpkin pies inedible
 })
})

Events

Custom Blocks

You can register many types of custom blocks in KubeJS. Here's the simplest way:

That's it! Launch the game, and assuming you've left KubeJS's auto-generated resources alone,
there should be a fully-textured block in the Creative menu under KubeJS (purple dye). KubeJS will
also generate the name "Example Block" for you.

To make modifications to this block, we use the block builder returned by the event.create() call.
The block builder allows us to chain together multiple modifications. Let's try making some of the
more common modifications:

All Block Builder Methods

This is a startup script, meaning that you will need to restart your game each time you want
to make changes to it.

StartupEvents.registry("block", (event) => {
 event.create("example_block") // Create a new block with ID "kubejs:example_block"
})

StartupEvents.registry("block", (event) => {
 event.create("example_block") // Create a new block
 .displayName("My Custom Block") // Set a custom name
 .material("wood") // Set a material (affects the sounds and some properties)
 .hardness(1.0) // Set hardness (affects mining time)
 .resistance(1.0) // Set resistance (to explosions, etc)
 .tagBlock("my_custom_tag") // Tag the block with `#minecraft:my_custom_tag` (can have multiple tags)
 .requiresTool(true) // Requires a tool or it won't drop (see tags below)
 .tagBlock("my_namespace:my_other_tag") // Tag the block with `#my_namespace:my_other_tag`
 .tagBlock("mineable/axe") //can be mined faster with an axe
 .tagBlock("mineable/pickaxe") // or a pickaxe
 .tagBlock('minecraft:needs_iron_tool') // the tool tier must be at least iron
})

https://wiki.latvian.dev/books/kubejs/page/list-of-events

In case it wasn't covered above, here's list of each method you can use when building a block.

displayName('name')
Sets the item's display name.

material('material') (No longer supported in 1.20+, see mapColor and soundType below!)
Set the item's material to an available material from the Materials List:

Materials List

air
amethyst
bamboo
bamboo_sapling
barrier
bubble_column
buildable_glass
cactus
cake
clay
cloth_decoration
decoration
dirt
egg
explosive
fire
froglight
frogspawn
glass
grass
heavy_metal
ice
ice_solid
lava
leaves
metal
moss
nether_wood
piston
plant
portal
powder_snow
replaceable_fireproof_plant
replaceable_plant
replaceable_water_plant

sand
sculk
shulker_shell
snow
sponge
stone
structural_air
top_snow
vegetable
water
water_plant
web
wood
wool

mapColor(MapColor) (1.20.1+ only)
Set block map color, you can find the entire list here, use ID in lowercase, e.g.
'color_light_green' .

soundType(SoundType) (1.20.1+ only)
Set block sound type:

SoundType List

Instead of using soundType(SoundType) you can also use one of these shortcut methods:

noSoundType()
woodSoundType()
stoneSoundType()
gravelSoundType()
grassSoundType()
sandSoundType()
cropSoundType()
glassSoundType()

wood
gravel
grass
lily_pad
stone
metal
glass
wool
sand

https://minecraft.fandom.com/wiki/Map_item_format#Base_colors

snow
powder_snow
ladder
anvil
slime_block
honey_block
wet_grass
coral_block
bamboo
bamboo_sapling
scaffolding
sweet_berry_bush
crop
hard_crop
vine
nether_wart
lantern
stem
nylium
fungus
roots
shroomlight
weeping_vines
twisting_vines
soul_sand
soul_soil
basalt
wart_block
netherrack
nether_bricks
nether_sprouts
nether_ore
bone_block
netherite_block
ancient_debris
lodestone
chain
nether_gold_ore
gilded_blackstone
candle
amethyst
amethyst_cluster
small_amethyst_bud
medium_amethyst_bud

large_amethyst_bud
tuff
calcite
dripstone_block
pointed_dripstone
copper
cave_vines
spore_blossom
azalea
flowering_azalea
moss_carpet
pink_petals
moss
big_dripleaf
small_dripleaf
rooted_dirt
hanging_roots
azalea_leaves
sculk_sensor
sculk_catalyst
sculk
sculk_vein
sculk_shrieker
glow_lichen
deepslate
deepslate_bricks
deepslate_tiles
polished_deepslate
froglight
frogspawn
mangrove_roots
muddy_mangrove_roots
mud
mud_bricks
packed_mud
hanging_sign
nether_wood_hanging_sign
bamboo_wood_hanging_sign
bamboo_wood
nether_wood
cherry_wood
cherry_sapling
cherry_leaves
cherry_wood_hanging_sign

chiseled_bookshelf
suspicious_sand
suspicious_gravel
decorated_pot
decorated_pot_cracked

You can construct your own sound type with new SoundType(volume, pitch, breakSound, stepSound,
placeSound, hitSound, fallSound) where volume and pitch are floats 0.0 - 1.0 (usually leave it as 1.0)
and all sounds are SoundEvents.

 property(BlockProperty)
Adds more blockstates to the block, like being waterlogged or facing a certain
direction. A full list of properties is available in the Properties List:

Properties List

Usage: .property(BlockProperties.PICKLES)

Boolean Properties (true/false):
attached,
berries,
bloom,
bottom,
can_summon,
conditional,
disarmed,
down,
drag,
east,
enabled,
extended,
eye,
falling,
hanging,
has_book,
has_bottle_0,
has_bottle_1,
has_bottle_2,
has_record,
inverted,
in_wall,
lit,

locked,
north,
occupied,
open,
persistent,
powered,
short,
shrieking,
signal_fire,
snowy,
south,
triggered,
unstable,
up,
vine_end,
waterlogged,
west

Integer properties:
age_1,
age_2,
age_3,
age_4,
age_5,
age_7,
age_15,
age_25,
bites,
candles,
delay,
distance,
eggs,
hatch,
layers,
level,
level_cauldron,
level_composter,
level_flowing,
level_honey,
moisture,
note,
pickles,
power,

respawn_anchor_charges,
rotation_16,
stability_distance,
stage

Directional Properties:
facing,
facing_hopper,
horizontal_facing,
vertical_direction

Other (enum) Properties:
attach_face,
axis,
bamboo_leaves,
bed_part,
bell_attachment,
chest_type,
door_hinge,
double_block_half,
dripstone_thickness,
east_redstone,
east_wall,
half,
horizontal_axis,
mode_comparator,
north_redstone,
north_wall,
noteblock_instrument,
orientation,
piston_type,
rail_shape,
rail_shape_straight,
sculk_sensor_phase,
slab_type,
south_redstone,
south_wall,
stairs_shape,
structureblock_mode,
tilt,
west_redstone,
west_wall

 tagBlock('namespace:tag_name')
adds a tag to the block

tagItem('namespace:tag_name')
adds a tag to the block's item, if it has one

tagBoth('namespace:tag_name')
adds both block and item tag if possible

hardness(float)
Sets the block's Hardness value. Used for calculating the time it takes for the block
to be destroyed.

resistance(float)
Set's the block's resistance to things like explosions

unbreakable()
Shortcut to set the resistance to MAX_VALUE and hardness to -1 (like bedrock)

lightLevel(number)
Sets the block's light level.
Passing an integer (0-15) will set the block's light level to that value.
Passing a float (0.0-1.0) will multiply that number by 15, then set the block's light
level to the nearest integer

opaque(boolean)
Sets whether the block is opaque. Full, opaque blocks will not let light through.

fullBlock(boolean)
Sets whether the block renders as a full block. Full blocks have certain optimizations
applied to them, such as not rendering terrain behind them. If you're using .box() to
make a custom hitbox, please set this to false .

requiresTool(boolean)
If true , the block will use certain block tags to determine whether it should drop an
item when mined. For example, a block tagged with #minecraft:mineable/axe ,
#minecraft:mineable/pickaxe , and #minecraft:needs_iron_tool would drop nothing unless it
was mined with an axe or pickaxe that was at least iron level.

renderType('solid'|'cutout'|'translucent')
Sets the render type.

cutout is required for blocks with texture like glass, where pixels are either
transparent or not
translucent is required for blocks like stained glass, where pixels can be
semitransparent
otherwise, use solid if all pixels in your block are opaque.

color(tintindex, color)
Recolors a block to a certain color

textureAll('texturepath')
Textures all 6 sides of the block to the same texture.
The path must look like kubejs:block/texture_name (which would be included under
kubejs/assets/kubejs/textures/block/texture_name.png).
Defaults to kubejs:block/<block_name>

texture('side', 'texturepath')
Texture one side by itself. Valid sides are up , down , north , south , east , and west .

model('modelpath')

Specify a custom model.
The path must look like kubejs:block/texture_name (which would be included under
kubejs/assets/kubejs/models/block/texture_name.png).
 Defaults to kubejs:block/<block_name> .

noItem()
Removes the associated item. Minecraft does this by default for a few blocks, like
nether portal blocks. Use this if the player should never be able to hold or place the
block.

box(x0, y0, z0, x1, y1, z1, boolean)
box(x0, y0, z0, x1, y1, z1) // defaults to true

Sets a custom hitbox for the block, affecting collision. You can use this multiple
times to define a complex shape composed of multiple boxes.
Each box is a rectangular prism with corners at (x0,y0,z0) and (x1,y1,z1)
You will probably want to set up a custom block model that matches the shape you
define here.
The final boolean determines the coordinate scale of the box. Passing in true will
use the numbers 0-16, while passing in false will use coordinates ranging from 0.0 to
1.0

noCollision()
Removes the default full-block hitbox, allowing you to fall through the block.

notSolid()
Tells the renderer that the block isn't solid.

waterlogged()
Allows the block to be waterloggable.

noDrops()
The block will not drop itself, even if mined with silk touch.

slipperiness(float)
Sets the slipperiness of the block. Affects how much entities slide while moving on it.
Almost every block in Vanilla has a slipperiness value of 0.6, except slime (0.8) and
ice (0.98).

speedFactor(float)
A modifier affecting how quickly players walk on the block.

jumpFactor(float)
A modifier affecting how high players can jump off the block.

randomTick(consumer<randomTickEvent>)
A function to run when the block recieves a random tick.

item(consumer<itemBuilder>)
Modify certain properties of the block's item (see link)

setLootTableJson(json)
Pass in a custom loot table JSON directly

setBlockstateJson(json)
Pass in a custom blockstate JSON directly

setModelJson(json)
Pass in a custom model JSON directly

noValidSpawns(boolean)
If true , the block is not counted as a valid spawnpoint for entities

https://wiki.latvian.dev/books/kubejs/page/custom-items

suffocating(boolean)
Whether the block will suffocate entities that have their head inside it

viewBlocking(boolean)
Whether the block counts as blocking a player's view.

redstoneConductor(boolean)
Sets whether the block will conduct redstone. True by default.

transparent(boolean)
Sets whether the block is transparent or not

defaultCutout()
batches a bunch of methods to make blocks such as glass

defaultTranslucent()
similar to defaultCutout() but using translucent layer instead

Events

Block Modification

BlockEvents.modification event is a startup script event that allows you to change properties of
existing blocks.

All available properties:

String material
boolean hasCollision
float destroySpeed
float explosionResistance
boolean randomlyTicking
String soundType
float friction
float speedFactor
float jumpFactor
int lightEmission
boolean requiresTool

The block modification event is a startup event.

BlockEvents.modification(e => {
 e.modify('minecraft:stone', block => {
 block.destroySpeed = 0.1
 block.hasCollision = false
 })
})

Events

Custom Tiers

You can make custom tiers for armor and tools in a startup script. They are not reloadable without
restarting the game. The events are not cancellable.

Tool tiers

Armor tiers

The custom tier event is a startup event.

ItemEvents.toolTierRegistry(event => {
 event.add('tier_id', tier => {
 tier.uses = 250
 tier.speed = 6.0
 tier.attackDamageBonus = 2.0
 tier.level = 2
 tier.enchantmentValue = 14
 tier.repairIngredient = '#forge:ingots/iron'
 })
})

ItemEvents.armorTierRegistry(event => {
 event.add('tier_id', tier => {
 tier.durabilityMultiplier = 15 // Each slot will be multiplied with [13, 15, 16, 11]
 tier.slotProtections = [2, 5, 6, 2] // Slot indicies are [FEET, LEGS, BODY, HEAD]
 tier.enchantmentValue = 9
 tier.equipSound = 'minecraft:item.armor.equip_iron'
 tier.repairIngredient = '#forge:ingots/iron'
 tier.toughness = 0.0 // diamond has 2.0, netherite 3.0
 tier.knockbackResistance = 0.0
 })
})

Events

Worldgen
General Notes
Biome Filters:
Biome filters work similarly to recipe filters and can be used to create complex and exact filters to
fine-tune where your features may and may not spawn in the world. They are used for the biomes
field of a feature and may look something like this:

Rule Tests and Targets:

WorldgenEvents.add(event => {
 event.addOre(ore => {
 // let's look at all of the 'simple' filters first
 ore.biomes = 'minecraft:plains' 		// only spawn in exactly this biome
 ore.biomes = /^minecraft:.*/			// spawn in all biomes that match the given pattern
 ore.biomes = '#minecraft:is_forest' 	// spawn in all biomes tagged as 'minecraft:is_forest'

 // filters can be arbitrarily combined using AND, OR and NOT logic
 ore.biomes = {}							// empty AND filter, always true
 ore.biomes = []							// empty OR filter, always true
 ore.biomes = { not: 'minecraft:ocean' }	// spawn in all biomes that are NOT 'minecraft:ocean'

 // since AND filters are expressed as maps and expect string keys,
 // all of the 'primitive' filters can also be expressed as such
 ore.biomes = {					// see above for an explanation of these filters
 id: 'minecraft:plains',
 id: /^minecraft:.*/,			// regex (also technically an ID filter)
 tag: 'minecraft:is_forest',
 }
 // note all of the above syntax may be mixed and matched individually
 })
})

In 1.18, Minecraft WorldGen has changed to a "target-based" replacement system, meaning you
can specify specific blocks to be replaced with specific other blocks within the same feature
configuration. (For example, this is used to replace Stone with the normal ore and Deepslate with
the Deepslate ore variant).

Each target gets a "rule test" as input (something that checks if a given block state should be
replaced or not) and produces a specific output block state. While scripting, both of these concepts
are expressed as the same class: BlockStatePredicate .

Syntax-wise, BlockStatePredicate is pretty similar to biome filters as they too can be combined using
AND or OR filters (which is why we will not be repeating that step here), and can be used to match
one of three different things fundamentally:

1. Blocks: these are simply parsed as strings, so for example 'minecraft:stone' to match
Stone

2. Block States: these are parsed as the block ID followed by an array of properties. You
would use something like 'minecraft:furnace[lit=true]' to match only Furnace blocks that are
lit. You can use F3 to figure out a block's properties, as well as possible values through
using the debug stick.

3. Block Tags: these are parsed in the "familiar" tag syntax, so you could use
'#minecraft:base_stone_overworld' to match all types of stone that can be found generating in
the ground in the Overworld.

More examples of how targets work can be found in the example script down below.

Height Providers:
Another system that may appear a bit confusing at first is the system of "height providers", which
are used to determine at what Y level a given ore should spawn and with what frequency. Used in
tandem with this feature are the so-called "vertical anchors", which may be used to get the height
of something relative to a specific anchor point (for example the top or bottom of the world).

Note that these are block tags, not item tags. They may (and probably will) be different!
(F3 is your friend!)

You can also use regular expressions with block filters, so /^mekanism:.+_ore$/ would match
any block from Mekanism whose ID ends with _ore . Keep in mind this will not match block
state properties!

When a RuleTest is required instead of a BlockStatePredicate , you can also supply that rule
test directly in the form of a JavaScript object (it will then be parsed the same as vanilla
would parse JSON or NBT objects). This can be useful if you want rule tests that have a
random chance to match.

In KubeJS, this system has been simplified a bit to make it easier to use for script developers. There
are two common types of ore placement:

1. Uniform: has the same chance to spawn anywhere in between the two anchors
2. Triangle: is more likely to spawn in the center of the two anchors than it is to spawn

further outwards

 To use these two, you can use the methods uniformHeight and traingleHeight in AddOreProperties ,
respectively. Vertical anchors have also been simplified, as you can use the aboveBottom / belowTop
helper methods in AddOreProperties .

Once again, see the example script for more information!

Example script
WorldgenEvents.add(event => {
 // use the anchors helper from the event
 const { anchors } = event

 event.addOre(ore => {
 ore.id = 'kubejs:glowstone_test_lmao' // (optional, but recommended) custom id for the feature
 ore.biomes = {
 not: 'minecraft:savanna' // biome filter, see above (technically also optional)
 }

 // examples on how to use targets
 ore.addTarget('#minecraft:stone_ore_replaceables', 'minecraft:glowstone') // replace anything in the vanilla
stone_ore_replaceables tag with Glowstone
 ore.addTarget('minecraft:deepslate', 'minecraft:nether_wart_block') // replace Deepslate with Nether Wart
Blocks
 ore.addTarget([
 'minecraft:gravel', // replace gravel...
 /minecraft:(.*)_dirt/ // or any kind of dirt (including coarse, rooted, etc.)...
], 'minecraft:tnt') // with TNT (trust me, it'll be funny)

 ore.count([15, 50]) // generate between 15 and 50 veins (chosen at random), you could use a single
number here for a fixed amount of blocks
 .squared() // randomly spreads the ores out across the chunk, instead of generating them in a
column
 .triangleHeight(// generate the ore with a triangular distribution, this means it will be more likely to be

placed closer to the center of the anchors
 anchors.aboveBottom(32), // the lower bound should be 32 blocks above the bottom of the world, so in
this case, Y = -32 since minY = -64
 anchors.absolute(96)	 // the upper bound, meanwhile is set to be just exactly at Y = 96
)								 // in total, the ore can be found between Y levels -32 and 96, and will be most likely at Y = (96 + -
32) / 2 = 32

 // more, optional parameters (default values are shown here)
 ore.size = 9 // max. vein size
 ore.noSurface = 0.5 // chance to discard if the ore would be exposed to air
 ore.worldgenLayer = 'underground_ores' // what generation step the ores should be generated in (see below)
 ore.chance = 0							 // if != 0 and count is unset, the ore has a 1/n chance to generate per chunk
 })

 // oh yeah, and did I mention lakes exist, too?
 // (for now at least, Vanilla is likely to remove them in the future)
 event.addLake(lake => {
 lake.id = 'kubejs:funny_lake' // BlockStatePredicate
 lake.chance = 4
 lake.fluid = 'minecraft:lava'
 lake.barrier = 'minecraft:diamond_block'
 })
})

WorldgenEvents.remove(event => {
 // print all features for a given biome filter
 event.printFeatures('', 'minecraft:plains')

 event.removeOres(props => {
 // much like ADDING ores, this supports filtering by worldgen layer...
 props.worldgenLayer = 'underground_ores'
 // ...and by biome
 props.biomes = [
 { category: 'icy' },
 { category: 'savanna' },
 { category: 'mesa' }
]

 // BlockStatePredicate to remove iron and copper ores from the given biomes
 // Note tags may NOT be used here, unfortunately...

Generation Steps
1. raw_generation
2. lakes
3. local_modifications
4. underground_structures
5. surface_structures
6. strongholds
7. underground_ores
8. underground_decoration
9. fluid_springs

10. vegetal_decoration
11. top_layer_modification

It's possible you may not be able to generate some things in their layer, like ores in Dirt,
because Dirt hasn't spawned yet. You may have to change the layer to one of the above
generation steps by calling ore.worldgenLayer = 'top_layer_modification' . However, this is not
recommended.

Nether ores are generated in underground_decoration step!

 props.blocks = ['minecraft:iron_ore', 'minecraft:copper_ore']
 })

 // remove features by their id (first argument is a generation step)
 event.removeFeatureById('underground_ores', ['minecraft:ore_coal_upper', 'minecraft:ore_coal_lower'])
})

Examples

Other

Other

Default Options
You can ship default options from options.txt with KubeJS. This includes keybindings, video
settings, enabled resource packs, controls like autojump and toggle sprint and wierd things like
advanced tooltips.

Why use this instead of just shipping options.txt? If you ship options.txt then the users options will
get overridden every time they update your modpack, where-as KubeJS only sets the options once,
on the first time the modpack boots.

To use it simply make a file called defaultoptions.txt in the kubejs/config folder. Then copy any lines
you want to set by default over from the normal options.txt file. You can also just copy the entire
file if you want to include everything.

A full list of what options the options.txt file can contain is available on the Minecraft Wiki:
https://minecraft.fandom.com/wiki/Options.txt

https://minecraft.fandom.com/wiki/Options.txt

Other

Changing Window Title and
Icon
Yes, you can do that with KubeJS too.

Here's how to do that in PaintNET:

Image not found or type unknown

Example result:

Image not found or type unknown

Image not found or type unknown

To change title, all you have to do is change title in kubejs/config/client.properties .

To change icon, you create a kubejs/config/packicon.png image in standard Minecraft texture
size preferably (64x64, 128x128, 256x256, that kind of size).

The image has to be saved as 32-bit PNG, not Auto-detect/24-bit, otherwise you will get a
JVM crash!

Currently incompatible with Fancy Menu!

Other

Loading Assets and Data
You can also use KubeJS to load assets from resource packs and data from datapacks! While this
isn't the only method, its one of the easiest. Other options are <TODO: make and link server
datapack load page and client generate assets event page>

The data folder is loaded identically to the data folder in a datapack. If you already have a
datapack just copy the folder(s) from inside the datapacks data folder to KubeJS' data folder.

The assets folder is loaded identically to the assets folder in a resourcepack. If you already have a
resourcepack just copy the folder(s) from inside the resourcepacks assets folder to KubeJS' assets
folder.

Other

Changing Mod Display
Names
Yes, it's cursed, but possible!

In a startup script, add this line:

This is useful when you add a bunch of items with KubeJS but want them to show your modpack
name instead of "KubeJS"

And yes, you can change name of other mods as well:

Platform.mods.kubejs.name = 'My Modpack Name'

Platform.mods.botania.name = 'Plant Tech Mod'

Other

KubeJS 6.1 Update
For script and pack developers

Scheduled events now take in durations (especially strings such as 200 t for tick
durations as well) for their delays!
NetworkEvents.fromServer and NetworkEvents.fromClient have been merged into
NetworkEvents.dataReceived , which will handle incoming data from the corresponding
side based on the script type.
Registry: event.custom(T) is now event.createCustom(() => T) , which takes in a supplier
rather than an object directly in order to avoid possible early loading of other registry
elements it might depend on. Note that custom still exists, but is HEAVILY discouraged for
this very reason!
Event .cancel() now exits event block - This may be a small change but it may affect
some scripts. Previously it would only mark event as cancelled and didn't do anything, but
now it will act as return; call as well.
Event results have been added! You now have more granular control over how events
work, closer to how they are handled on the Architectury / Minecraft side as well! For
example:

Right now, this new system is only actively used for item right click events, but will be
expanded to more events as time goes on (obviously without breaking scripts, and just
using event.cancel() will still work just fine)!

 ItemEvents.rightClicked('minecraft:stick', event => {
 // (note that only one of these will work at a time since they all immediately return!)
 event.cancel() // cancels the event and prevents the click from going through
 event.success() // cancels the event and forces the click to go through
 event.exit() // cancels the event without setting a result
 // in events that support custom results like item stacks, you can also do the following:
 event.success('minecraft:apple') // success + the result is an apple ��
 })

Massive backend rewrites, improved performance a lot - Lat did another pass over
the recipe event and has reworked the way recipes are parsed, as well as fixed async
recipe operations, so you should generally notice a decrease in reload times if all works as
intended! In some cases, recipes should now load even faster with KJS than they do with
just vanilla!

No more tag workarounds! (hopefully) - We have fixed resolving tag ingredients during
the recipe event on first world load and generally improved the way recipe filters work, so
you shouldn't have to use hacky double-reload workarounds anymore (please just... stop
using them already :ioa:)
Registries have been fixed on both Forge and Fabric - We have ironed out some
issues with the registry events, so you should now again be able to properly register
Fluids, modded registries, etc.
Renamed kubejs/logs files from .txt to .log - So you can now have formatting in
VSCode, etc.
Fixed resource and data pack order - User added resource packs and datapacks will
now be above KJS generated packs, so you should be able to change textures and other
things with them.
Added .zip loading from kubjes/data and kubejs/assets - You simply drop a .zip file
in that folder and it will force-load it (above KJS, under user packs)
Moved debugInfo config from kubejs/config/common.properties to local/kubejsdev.properties .
No idea why it was in common properties in first place, its a debug config for devs.
Improved Platform.mods.modid.name = 'Custom Name' It should work with custom mod
IDs on REI and ModNameTooltip now. You should use Platform.getInfo('custom_mod_id').name
= 'Custom Name' for non-existent mods.
Better recipe integration with ProbeJS - Because of new schema system in KJS, probe
is able to much better display what ingredients go where, with less hacks!
.stage(string) recipe function no longer requires Recipe Stages to work.
Fixed flowing fluid textures on Fabric and other fluid related issues.
Fixed errors being way too long in logs - Believe or not, KJS was not supposed to spit
out 150 lines of errors for each recipe.
Added a new wrapper FluidAmounts for... fluid amounts! For those of you who can't
remember just how many blocks, ingots and nuggets are needed to make a bucket, or
who just want to have cross-platform script compatibility with their scripts (since Fabric
uses "81000 droplets" rather than "1000 mB" for more precise fluid measurements)
Added custom toast notifications - You can use player.notify(title) , (title, subtitle) or
(Notification.make(...)) .
Added /kubejs reload config command - No longer you have to restart the game to
update configs!
Added /kubejs packmode [mode] command - Same as above, but you don't have to
mess with files at all.
Added /kubejs help command - Useful links directly in-game.
Removed /kjs_hand command - Instead added /kjs hand (with space) redirect. Some
might hate this change, but _ is much harder to reach than space, and I'm sure you'll get
used to it quickly and like it better.
Fluid registry .tag() fixed - Now tags flowing fluids too.
You can now replace and match fluids - You must use Fluid.of('minecraft:water') instead
of plain string, but you can use it in both {input: Fluid.of('minecraft:water')} recipe filter and
event.replaceInput('*', Fluid.of('minecraft:water'), Fluid.of('minecraft:lava')) replace functions for
supported recipe types.

For addon mod developers
Complete rewrite of recipe system - Recipes now use recipe schemas, a new system
that (almost) fully replaces the old RecipeJS objects. More on that in the Discord
announcement
Events now have results for more precise control over return values and we've added a
hasListeners() check for performance reasons. The most noticeable change for you is going
to be that your own events will need to return a EventResult , as well.
Fixed datagen issue - KJS should no longer keep datagens from closing game forever in
dev environment. We truly live in an age of wonders!

Update Primer (sorted by topics, still incomplete):
Recipe Schemas
From the announcement:

This is the big one. Recipe schemas completely change the way custom recipe
handlers are registered in KubeJS, and should hopefully also mean a lot less
boilerplate code down the line for you. Each recipe is now defined by a schema
containing a set of recipe components, with those components acting as
"codecs" for the underlying values. For you, this means the following:
- Instead of primarily using RecipeJS subclasses, you will now have to define a
RecipeSchema
 - Each schema uses a set of RecipeKeys, which are named
RecipeComponents with some additional properties like optional default
values and settings for automatic constructor and method generation
 - A RecipeComponent is a reusable definition of a recipe element (such as an
in/output item, a fluid, or even just a number value) that has a role (input,
output, other), a description (for use in addon mods like ProbeJS) and contains
logic for (de)serialisation and bulk recipe operations (i.e. recipe filtering and
replacement). There are lots of standard components provided in the
dev.latvian.mods.kubejs.recipe.component package, including blocks, items and
fluids, generic group and logic components (array, map, and, or), and all kinds of
primitives (including specialised ones such as number ranges and characters)
 - While the recipe schema will generate constructors by default, you can
override this behaviour by defining one yourself using constructor(factory, keys) .
Note that this will stop the default constructor from being generated, so if you
want to keep that, you will have to define it yourself again.
 (A good example of complex custom recipe constructors is
`ShapedRecipeSchema`)

“

discord://-/channels/303440391124942858/678385948706209822/1125804134281510983
discord://-/channels/303440391124942858/678385948706209822/1125804134281510983
https://www.youtube.com/watch?v=TiWWvDrIpIE

Download
You can download KubeJS 6.1 at https://kubejs.com/downloads!

- While schemas replace RecipeJS on the java side, on the JS side, the user is
still passed a RecipeJS object after creation, with additional autogenerated
"builder" methods for each component to allow for the user to set e.g. optional
values after recipe creation (e.g. event.smelting(...).xp(20).cookingTime(100)). and
you can add even more properties or do additional after-load validation by
overriding the recipe factory entirely!

https://kubejs.com/downloads

Addons

Addons

KubeJS UI
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/kubejs-ui

Addons

KubeJS Create
Download: CurseForge, Modrinth

Compacting
Syntax: compacting(output[], input[])

Features:

supports multiple inputs and outputs
supports .heated() and .superheated()
can have a fluid output as long as it has another item output
supports chance-based output
uses the Mechanical Press, Basin, and optionally a Blaze Burner

Crushing
Syntax: crushing(output[], input)

Features:

supports multiple chance-based outputs
supports .processingTime()
uses the Crushing Wheels

The example scripts are only here to demonstrate the recipes. They are not meant to be
used with the items shown.

ServerEvents.recipes(e => {
 e.recipes.create.compacting('diamond', 'coal_block')
 e.recipes.create.compacting('diamond', 'coal_block').heated()
 e.recipes.create.compacting('diamond', 'coal_block').superheated()
 e.recipes.create.compacting([Fluid.water(10), 'dead_bush'], ['#minecraft:saplings', '#minecraft:saplings'])
 e.recipes.create.compacting(['diamond', Item.of('diamond').withChance(0.3)], 'coal_block')
})

https://www.curseforge.com/minecraft/mc-mods/kubejs-create
https://modrinth.com/mod/kubejs-create

Cutting
Syntax: cutting(output[], input)

Features:

supports multiple chance-based outputs
supports .processingTime()
uses the Mechanical Saw

Deploying
Syntax: deploying(output[], input[])

Features:

supports multiple chance-based outputs
requires exactly two inputs, the second input is what the Deployer is holding
supports .keepHeldItem()
uses the Deployer

Emptying

ServerEvents.recipes(e => {
 e.recipes.create.crushing('diamond', 'coal_block')
 e.recipes.create.crushing('diamond', 'coal_block').processingTime(500)
 e.recipes.create.crushing(['diamond', Item.of('diamond').withChance(0.5)], 'coal_block')
})

ServerEvents.recipes(e => {
 e.recipes.create.cutting('diamond', 'coal_block')
 e.recipes.create.cutting('diamond', 'coal_block').processingTime(500)
 e.recipes.create.cutting(['diamond', Item.of('diamond').withChance(0.5)], 'coal_block')
})

ServerEvents.recipes(e => {
 e.recipes.create.deploying('diamond', ['coal_block', 'sand'])
 e.recipes.create.deploying(['diamond', 'emerald'], ['coal_block', 'sand']).keepHeldItem()
 e.recipes.create.deploying(['diamond', Item.of('diamond').withChance(0.5)], ['coal_block', 'sand'])
})

Syntax: emptying(output[], input)

Features:

requires one input and two outputs, the outputs must be an item and a fluid
uses the Item Drain

Filling
Syntax: filling(output, input[])

Features:

requires two inputs and one output, the inputs must be an item and a fluid
uses the Spout

Haunting
Syntax: haunting(output[], input)

Features:

supports multiple chance-based outputs
uses the Encased Fan and Soul Fire

Mechanical Crafting
Syntax: mechanical_crafting(output, pattern[], keys{})

ServerEvents.recipes(e => {
 e.recipes.create.emptying([Fluid.water(), 'bucket'], 'water_bucket')
})

ServerEvents.recipes(e => {
 e.recipes.create.filling('water_bucket', [Fluid.water(), 'bucket'])
})

ServerEvents.recipes(e => {
 e.recipes.create.haunting('soul_campfire', 'campfire')
 e.recipes.create.haunting(['wheat', 'oak_sapling'], 'potato')
 e.recipes.create.haunting(['wheat', Item.of('oak_sapling').withChance(0.2)], 'potato')
})

Features:

mostly identical to the default Shaped Crafting
supports up to 9x9 grid size
uses the Mechanical Crafter

Milling
Syntax: milling(output[], input)

Features:

supports multiple chance-based outputs
uses the Millstone

Mixing
Syntax: mixing(output[], input)

Features:

supports multiple chance-based outputs
supports fluid inputs and outputs
supports .heated() and .superheated()

ServerEvents.recipes(e => {
 e.recipes.create.mechanical_crafting('emerald', [
 ' DDD ',
 'D D',
 'D D',
 'D D',
 ' DDD '
], {
 D: 'dirt'
 })
})

ServerEvents.recipes(e => {
 e.recipes.create.milling('diamond', 'coal_block')
 e.recipes.create.milling(['diamond', 'emerald'], 'coal_block')
 e.recipes.create.milling(['diamond', Item.of('diamond').withChance(0.5)], 'coal_block')
})

uses the Mechanical Mixer, Basin, and optionally a Blaze Burner

Pressing
Syntax: pressing(output[], input)

Features:

supports multiple chance-based outputs
uses the Mechanical Press

Sandpaper Polishing
Syntax: sandpaper_polishing(output, input)

Features:

supports chance-based output
uses any item tagged with create:sandpaper

Sequenced Assembly

ServerEvents.recipes(e => {
 e.recipes.create.mixing('diamond', 'coal_block')
 e.recipes.create.mixing('diamond', 'coal_block').heated()
 e.recipes.create.mixing('diamond', 'coal_block').superheated()
 e.recipes.create.mixing([Fluid.water(10), 'dead_bush'], ['#minecraft:saplings', '#minecraft:saplings'])
 e.recipes.create.mixing(['diamond', Item.of('diamond').withChance(0.3)], 'coal_block')
})

ServerEvents.recipes(e => {
 e.recipes.create.pressing('diamond', 'coal_block')
 e.recipes.create.pressing(['diamond', 'emerald'], 'coal_block')
 e.recipes.create.pressing(['diamond', Item.of('diamond').withChance(0.5)], 'coal_block')
})

ServerEvents.recipes(e => {
 e.recipes.create.sandpaper_polishing('diamond', 'coal_block')
 e.recipes.create.sandpaper_polishing(Item.of('diamond').withChance(0.5), 'coal_block')
})

Syntax: sequenced_assembly(output[], input, sequence[]).transitionalItem(item).loops(int)

Output is an item or an array of items. If it is an array:

The first item is the real output, the remainder is scrap.
Only one item is chosen, with an equal chance of each.
You can use Item.of('create:shaft').withChance(2) to double the chance of that item being
chosen.

Transitional Item is any item used during the intermediate stages of the assembly.

Sequence is an array of recipes of the following types:

create:cutting
create:pressing
create:deploying
create:filling

The transitional item needs to be the input and output of each of these recipes.

Loops is the number of times that the recipe repeats. Calling .loops() is optional and defaults to 4.

ServerEvents.recipes(e => {
	e.recipes.create.sequenced_assembly([
		Item.of('create:precision_mechanism').withChance(130.0), // this is the item that will appear in JEI as the result
		Item.of('create:golden_sheet').withChance(8.0), // the rest of these items will be part of the scrap
		Item.of('create:andesite_alloy').withChance(8.0),
		Item.of('create:cogwheel').withChance(5.0),
		Item.of('create:shaft').withChance(2.0),
		Item.of('create:crushed_gold_ore').withChance(2.0),
		Item.of('2x gold_nugget').withChance(2.0),
		'iron_ingot',
		'clock'
], 'create:golden_sheet', [// 'create:golden_sheet' is the input
		// the transitional item set by `transitionalItem('create:incomplete_large_cogwheel')` is the item used during the
intermediate stages of the assembly
		e.recipes.createDeploying('create:incomplete_precision_mechanism', ['create:incomplete_precision_mechanism',
'create:cogwheel']),
		// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
		e.recipes.createDeploying('create:incomplete_precision_mechanism', ['create:incomplete_precision_mechanism',
'create:large_cogwheel']),
		e.recipes.createDeploying('create:incomplete_precision_mechanism', ['create:incomplete_precision_mechanism',

Transitional Items
As mentioned earlier, any item can be a transition item. However, this is not completely
recommended.

If you wish to make your own transitional item, it's best if you make the type
create:sequenced_assembly .

'create:iron_nugget'])
]).transitionalItem('create:incomplete_precision_mechanism').loops(5) // set the transitional item and the
number of loops

	// for this code to work, kubejs:incomplete_spore_blossom needs to be added to the game
	let inter = 'kubejs:incomplete_spore_blossom' // making a variable to store the transitional item makes the code
more readable
	e.recipes.create.sequenced_assembly([
		Item.of('spore_blossom').withChance(16.0), // this is the item that will appear in JEI as the result
		Item.of('flowering_azalea_leaves').withChance(16.0), // the rest of these items will be part of the scrap
		Item.of('azalea_leaves').withChance(2.0),
		'oak_leaves',
		'spruce_leaves',
		'birch_leaves',
		'jungle_leaves',
		'acacia_leaves',
		'dark_oak_leaves'
], 'flowering_azalea_leaves', [// 'flowering_azalea_leaves' is the input
		// the transitional item is a variable, that is 'kubejs:incomplete_spore_blossom' and is used during the
intermediate stages of the assembly
		e.recipes.createPressing(inter, inter),
		// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
		e.recipes.createDeploying(inter, [inter, 'minecraft:hanging_roots']),
		e.recipes.createFilling(inter, [inter, Fluid.water(420)]),
		e.recipes.createDeploying(inter, [inter, 'minecraft:moss_carpet']),
		e.recipes.createCutting(inter, inter)
]).transitionalItem(inter).loops(2) // set the transitional item and the number of loops
})

StartupEvents.registry('item', e => {
	e.create('incomplete_spore_blossom', 'create:sequenced_assembly')
})

Splashing/Washing
Syntax: splashing(output[], input)

Features:

supports multiple chance-based outputs
uses the Encased Fan and Water

Mysterious Conversion

ServerEvents.recipes(e => {
 e.recipes.create.splashing('soul_campfire', 'campfire')
 e.recipes.create.splashing(['wheat', 'oak_sapling'], 'potato')
 e.recipes.create.splashing(['wheat', Item.of('oak_sapling').withChance(0.2)], 'potato')
})

Mysterious Conversion recipes are client-side only, so the only way to add them currently is
using reflection.

Goes inside client_scripts and not in an event.

//reference the classes used for the recipe
let MysteriousItemConversionCategory =
Java.loadClass('com.simibubi.create.compat.jei.category.MysteriousItemConversionCategory')
let ConversionRecipe = Java.loadClass('com.simibubi.create.compat.jei.ConversionRecipe')

//add the recipes manually
MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('apple', 'carrot'))

Preventing Recipe Auto-Generation
If you don't want smelting, blasting, smoking, crafting, or stonecutting to get an auto-generated
counterpart, then include manual_only at the end of the recipe id:

Other types of prevention, can be done in the create config (the goggles button leads you there).

If it is not in the config, then you can not change it.

MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('golden_apple', 'golden_carrot'))

ServerEvents.recipes(e => {
	e.shapeless('wet_sponge', ['water_bucket', 'sponge']).id('kubejs:moisting_the_sponge_manual_only')
})

Addons

KubeJS Thermal
Download: CurseForge, Modrinth

Supported recipe types:

- furnace
- sawmill
- pulverizer
- smelter
- centrifuge
- press
- crucible
- chiller
- refinery
- brewer
- bottler

event.recipes.thermal.press('minecraft:bone', '#forge:dyes/black')
event.recipes.thermal.crucible(Fluid.of('minecraft:water', 300), '#minecraft:saplings')

- insolator

event.recipes.thermal.insolator('minecraft:bone', '#forge:dyes/black').water(400)

- pulverizer_catalyst
- smelter_catalyst
- insolator_catalyst

event.recipes.thermal.pulverizer_catalyst('minecraft:coal').primaryMod(1.0).secondaryMod(1.0).ene
rgyMod(1.0).minChance(0.0).useChance(1.0)

- stirling_fuel
- compression_fuel
- magmatic_fuel
- numismatic_fuel
- lapidary_fuel

This info is currently incomplete!

https://www.curseforge.com/minecraft/mc-mods/kubejs-thermal
https://modrinth.com/mod/kubejs-thermal

event.recipes.thermal.lapidary_fuel('minecraft:coal').energy(100000)

Addons

KubeJS Mekanism
Download: CurseForge, Modrinth

No info yet!

https://www.curseforge.com/minecraft/mc-mods/kubejs-mekanism
https://modrinth.com/mod/kubejs-mekanism

Addons

KubeJS Immersive
Engineering
Download: CurseForge, Modrinth

No info yet!

https://www.curseforge.com/minecraft/mc-mods/kubejs-immersive-engineering
https://modrinth.com/mod/kubejs-immersive-engineering

Addons

KubeJS Blood Magic
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/kubejs-blood-magic

Addons

KubeJS Tinkers Construct
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/kubejs-tinkers-construct

Addons

PonderJS
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/ponderjs

Addons

LootJS
Download: CurseForge, Modrinth

No info yet!

https://www.curseforge.com/minecraft/mc-mods/lootjs
https://modrinth.com/mod/lootjs

Addons

ProbeJS
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/probejs

Addons

KubeJS Additions
Download: CurseForge, Modrinth

No info yet!

For more information please see the project's Github Page, which has usage examples and
documentation.

https://www.curseforge.com/minecraft/mc-mods/kubejs-additions
https://modrinth.com/mod/kubejs-additions
https://github.com/Hunter19823/kubejsadditions#kubejs-additions

Addons

MoreJS
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/morejs

Addons

PowerfulJS
Download: CurseForge

No info yet!

https://www.curseforge.com/minecraft/mc-mods/powerfuljs

Addons

beJS
Download: CurseForge

Block Entities
Custom BlockEntities are created in a startup script. They cannot be reloaded without restarting
the game. The event is not cancellable.

The custom BlockEntity event is a startup event.

StartupEvents.registry('block', event => {
	event.create('example_block', 'entity' /*has to be here for the BE builder to work*/).displayName('Example
Block')
	.entity(builder => { // adds a BlockEntity onto this block
	 builder.ticker((level, pos, state, be) => { // a tick method, called on block entity tick
 if(!level.clientSide) { // ALWAYS check side, the tick method is called on both CLIENT and SERVER
 if(level.levelData.gameTime % 20 == 0) { // only .levelData.gameTime works for some reason??
 if(level.getBlockState(pos.above()) === Blocks.AIR.defaultBlockState()) {
 level.setBlock(pos.above(), Blocks.GLASS.defaultBlockState(), 3)
 	be.persistentData.putBoolean("placed", true)
 } else {
 level.setBlock(pos.above(), Blocks.AIR.defaultBlockState(), 3)
 be.persistentData.putBoolean("placed", false)
 }
 	console.info("placed: " + be.persistentData.getBoolean("placed"))
 }
 }
 	}).defaultValues(tag => tag = { progress: 0, example_value_for_extra_saved_data: '0mG this iz Crazyyy'}) //
adds a 'default' saved value, added on block entity creation (place etc)
 // [1st param: CompoundTag consumer]
 .addValidBlock('example_block') // adds a valid block this can attach to, useless in normal circumstances
(except if you want to attach to multiple blocks or are building the BE separately)
 .itemHandler(27) // adds a basic item handler to this block entity, use something like PowerfulJS for more

https://www.curseforge.com/minecraft/mc-mods/bejs

alternatively, you can create the BlockEntity separately and attach it with
EntityBlockJS.Builder#entity('kubejs:be_id')

advanced functionality
 // [1st param: slot count]
 .energyHandler(10000, 1000, 1000) // adds a basic FE handler, same as above
 // [1st param: max energy, 2nd param: max input, 3rd param: max output]
 .fluidHandler(1000, stack => true) // adds a basic fluid handler
 	 // [1st param: max amount, 2nd param: fluid filter]
 })
})

StartupEvents.registry('block_entity_type', event => {
	event.create('example_block')
	.ticker((level, pos, state, be) => { // a tick method, called on block entity tick
 if(!level.clientSide) { // ALWAYS check side, the tick method is called on both CLIENT and SERVER
 if(level.levelData.gameTime % 20 == 0) { // only .levelData.gameTime works for some reason??
 if(level.getBlockState(pos.above()) === Blocks.AIR.defaultBlockState()) {
 level.setBlock(pos.above(), Blocks.GLASS.defaultBlockState(), 3)
 } else {
 level.setBlock(pos.above(), Blocks.AIR.defaultBlockState(), 3)
 }
 }
 }
 }).saveCallback((level, pos, be, tag) => { // called on BlockEntity save, don't see why you would ever need
these tbf, but they're here
 tag.putInt("tagValueAa", be.getPersistentData().getInt('progress'))
 }).loadCallback((level, pos, be, tag) => { // called on BlockEntity load, same as above
 be.getPersistentData().putInt("progress", tag.getInt("tagValueAa"))
 }).defaultValues(tag => tag = { progress: 0, example_value_for_extra_saved_data: '0mG this iz Crazyyy'}) //
adds a 'default' saved value, added on block entity creation (place etc)
 // [1st param: CompoundTag consumer]
 .addValidBlock('example_block') // adds a valid block this can attach to, useless in normal circumstances
(except if you want to attach to multible blocks)
 .hasGui() // if ScreenJS is installed, marks this blockentity as having a GUI, doesn't do anything otherwise
 .itemHandler(27) // adds a basic item handler to this block entity, use something like PowerfulJS for more
advanced functionality
 // [1st param: slot count]
 .energyHandler(10000, 1000, 1000) // adds a basic FE handler, same as above

all valid methods available on all builders:

addValidBlock('block_id')
ticker((level, pos, state, blockEntity) => ...)
defaultValues(tag => ...)
itemHandler(capacity)
energyHandler(capacity, maxReceive, maxExtract)
fluidHandler(capacity, fluidStack => isValid)

Multiblocks
multiblock builder example:

 // [1st param: max energy, 2nd param: max input, 3rd param: max output]
 .fluidHandler(1000, stack => true) // adds a basic fluid handler
 	 // [1st param: max amount, 2nd param: fluid filter]
})

StartupEvents.registry('block', event => {
 let CAP_PREDICATE = be => { // has *any* forge capability (item, energy, fluid)
 return be != null && (be.getCapability(ForgeCapabilities.ITEM_HANDLER).present ||
be.getCapability(ForgeCapabilities.FLUID_HANDLER).present ||
be.getCapability(ForgeCapabilities.ENERGY).present)
 }

	event.create('multi_block', 'multiblock').material('metal').hardness(5.0).displayName('Multiblock')
	 .entity(builder => {
	 builder.ticker((level, pos, state, be) => { // tick me here, but ONLY WHEN MULTIBLOCK IS FORMED!!

 	})
 	.pattern(() => { // ordering is: [aisle: z, aisle contents[]: y, single string: x]
 	 return BlockPatternBuilder.start()
 	 .aisle('BBB',
 'ACA',
 'AAA')
 .aisle('BBB',
 'AAA',
 'AAA')

extra valid methods on multiblock builder:

pattern(builder => ...)

available static methods in BlockInWorld :

hasState(predicate => ... return boolean)
hasBlockEntity(predicate => ... return boolean)
or(predicate1, predicate2)
and(predicate1, predicate2)

more advanced example: link

multiblock (and recipe type) example: link

 .aisle('BBB',
 'AAA',
 'AAA')
 .where('A', BlockInWorld.or(BlockInWorld.hasState(BlockPredicate.forBlock('minecraft:iron_block')),
BlockInWorld.hasBlockEntity(CAP_PREDICATE)))
 					// ^ iron block OR any capability on a BE
 .where('C', BlockInWorld.hasState(BlockPredicate.forBlock('kubejs:multi_block')))
 					// ^ controller block
 .where('B', BlockInWorld.hasState(BlockPredicate.forBlock('minecraft:copper_block')))
 					// ^ self explanatory
 	})
 })
 .property(BlockProperties.HORIZONTAL_FACING) // block builder stuff, facing direction
 .defaultState(state => {
 state.setValue(BlockProperties.HORIZONTAL_FACING, Direction.NORTH)
 })
 .placementState(state => {
 state.setValue(BlockProperties.HORIZONTAL_FACING, state.horizontalDirection.opposite)
 })
})

currently only 1 input & 1 output per type are set as the multiblock's IO, and it's the last one
found in the scan.

https://gist.github.com/screret/2aa4e6f793123af67d854d6214cc8439
https://gist.github.com/screret/e4b95c65da3960d9740f95cde6406f08

Recipe Types
beJS can create custom recipe types for your block entities to use!

valid methods on all RecipeType builders:

assembler((recipe, container) => ...)
maxInputs(count)
maxOutputs(count)
toastSymbol(stack)

Item/Fluid Handlers
beJS has multiple custom handlers that have extra functionality:

IMultipleItemHandler
IMultipleItemHandler is an item handler with multiple slots. valid methods listed below:

getAllContainers() : List<IItemHandlerModifiable>
getContainer(index) : IItemHandlerModifiable
getStackInSlot(container, slot) : ItemStack
insertItem(container, slot, stack, simulate) : ItemStack
extractItem(container, slot, amount, simulate) : ItemStack
getSlotLimit(container, slot) : int
isItemValid(container, slot, stack) : boolean
setStackInSlot(container, slot, stack)

StartupEvents.registry('recipe_type', event => {
 event.create('name_here')
 .assembler((recipe, container) => { // optional, but very much suggested
 let results = recipe.results
 for (let i = 0; i < results.size() && i < container.containerSize; ++i) {
 container.setItem(i, results.get(i))
 }
 })
 .maxInputs(2) // required
 .maxOutputs(4) // required
 .toastSymbol('kubejs:block_id_here') // optional
})

IMultipleFluidHandler
IMultipleItemHandler is a fluid handler with multiple slots. valid methods listed below:

default forge IFluidHandler methods (not listed here)
fill(tank, fluidStack, action) : int
drain(tank, fluidStack, action) : FluidStack
drain(tank, maxDrain, action) : FluidStack

Addons

ScreenJS
Download: CurseForge

Custom Container menus are created in a startup script. They cannot be reloaded without
restarting the game. The event is not cancellable.

for block entities:

The custom ContainerMenu event is a startup event.

StartupEvents.registry('menu', event => {
 event.create('example_block' /*name can be anything*/, 'block_entity')
 .addSlot(-10, -10) // adds a slot into this x,y position on the texture
 .addSlot(10, 200)
 .loop(builder /*this builder*/=> {
 for(let x = 0; x < 9; x++) {
 for (let y = 0; y < 4; y++) {
 builder.addSlot(x * 18 /*<- the width of a slot, remember to add this*/, y * 18, x + y * 4, 0)
 }
 }
 })
 .addOutputSlot(118, 118, 0, 0, 1, 'minecraft:smelting') // adds a slot you can't put an item into, but can pull
an item from
 																// LAST PARAMETER CAN BE NULL FOR NO OUTPUT HANDLING
 		.inputSlotIndices(0) // sets a list of ITEM HANDLER indexes to handle as slotChanged callback input
 .playerInventoryY(100) // marks the start of the player's inventory on the texture
 .tintColor(0xFF00FF00) // a color to tint the whole inventory texture, in hexadecimal [a, r, g, b]
 .progressDrawable(50, 50, new Rectangle(0, 0, 10, 30), 'forge:textures/white.png', 'up', 'energy') // displays
an energy bar from the blockentity's FE capability
 		.slotChanged((menu, level, player, itemHandlers) => {
 		console.info('' + player)
 	})

 .setBlockEntity('kubejs:example_block') // the block entity type that should open this GUI on right-click
})

https://www.curseforge.com/minecraft/mc-mods/screenjs

for any block:

for entities:

and lastly, for completely separate 'basic' GUIs:

valid menu types:

basic (this is the default)
block_entity
block
entity

methods the menu builder supports:

addSlot(x, y, slotIndex, containerIndex)
addOutputSlot(x, y, slotIndex, inputContainerIndex, outputContainerIndex, recipeType)
loop(builder => ...)
inputSlotIndices(int[] indexes)
tintColor(color)
drawable(screenX, screenY, rectangle, textureLocation)

StartupEvents.registry('menu', event => {
 event.create('grass_block' /*name can be anything*/, 'block')
 /*default parameter set*/
 		.addItemHandler(9) // adds an item handler.
 		.addItemHandler(1)
 		.inputSlotIndices(0)
 .setBlock('minecraft:grass_block') // the block that should open this GUI on right-click
})

StartupEvents.registry('menu', event => {
 event.create('snow_golem' /*name can be anything*/, 'entity')
 /*default parameter set*/
 .setEntity('minecraft:snow_golem') // the enity type that should open this GUI on right-click
})

StartupEvents.registry('menu', event => {
 event.create('name_here' /*name can be anything*/)
 /*default parameter set*/
})

progressDrawable(x, y, rectangle, textureLocation, direction, type)
fluidDrawable(x, y, rectangle, textureLocation, direction, tankIndex)
customDrawable(x, y, rectangle, textureLocation, direction, (menu, screen, drawable, direction) => ...)
backroundTexture(texture, rectangle)
quickMoveFunc((player, slotIndex, menu) => ... return item)
slotChanged((menu, level, player, itemHandler) => ...)
validityFunc((player, pos) => ... return boolean)
disablePlayerInventory()
playerInventoryY(yPos)
button(rectangle, textComponent, button => ...)

default available types:

PROGRESS
FUEL
ENERGY

default available move directions:

UP
DOWN
LEFT
RIGHT

available types:

Rectangle(x, y, u ,v)
MenuUtils (contains progress(max, current, length) for custom bars)
RecipeWrapper (forge IItemHandlerModifiable wrapper for recipes)
CraftingWrapper (ScreenJS wrapper class used for crafting recipes)

Custom Key Binds
ScreenJS can do custom key bindings! examples & available methods below:

The custom KeyBind event is a Client event.

// client_scripts

KeybindEvents.register(event => {
 event.register(new KeyBind("open_menu" /* name */, InputConstants.KEY_G /* key index, opengl spec */,
"screenjs" /* category name */), (action, modifiers /* modifiers as per OpenGL spec */) => {

available methods:

register

available types:

KeyBind(name, keyIndex, category)
KeyAction(action, modifiers)
InputConstants
Minecraft (client main class)

 if (action == 1) { // action == 1 is PRESS
 Minecraft.instance.gui.setOverlayMessage(Text.string('AAA').yellow(), false) // vanilla method
 MenuScreens.create('kubejs:separate', Minecraft.instance, 1000, Text.string('AAA').yellow()) // opens a
GUI container, preferably of type 'basic'
 } else if (action == 0) { // action == 0 is RELEASE
 Minecraft.instance.gui.setOverlayMessage(Text.string('BBB').yellow(), true)
 } else { // action == 2 is REPEAT (after a second of PRESS)
 Minecraft.instance.gui.setOverlayMessage(Text.string('REPEAT').red(), false)
 }
 })
})

Addons

KubeJS REI Runtime
Download: Curseforge Modrinth

KubeJS REI Runtime lets you show/hide items in REI dynamically, it provides these methods by
default:

// in client_scripts

REIRuntime.showItem(item); // shows an item in REI
REIRuntime.showItems([item, item, ...]); // shows items in REI
REIRuntime.hideItem(item); // hides an item in REI
REIRuntime.hideItems([item, item, ...]); // hides items in REI

https://www.curseforge.com/minecraft/mc-mods/kubejs-rei-runtime
https://modrinth.com/mod/kubejs-rei-runtime

Addons

KubeJS Botany Pots
Download: Curseforge Modrinth

This mod allows you to create crops, soils, and fertilizers for the Botany Pots mod.

ServerEvents.recipes(event => {
 event.recipes.botanypots.crop(
 "minecraft:candle", // seed item
 ["oak_leaves"], // categories that this crop can be planted on
 { block: "minecraft:candle" }, // display block
 [
 Item.of ("minecraft:candle") // item
 .withChance(100) // weight of this entry compared to the others
 .withRolls(1, 2) // the times this loot will be chosen (min, max)
 // for example, when chosen this will give 1 to 2 candles
],
 10, // growthTicks
 1, // optional, growthModifier - this can be set to 1 in most cases
)

 event.recipes.botanypots.soil(
 "minecraft:oak_leaves", // the item that this soil is attached to
 { block: "minecraft:oak_leaves" }, // display block
 ["oak_leaves"], // categories that this soil provides
 100, // growth ticks that this soil will provide, set to -1 for no modifier
 0.5 // optional, growth modifier, example: 0.5 means all crops will take half the time
)

 event.recipes.botanypots.fertilizer(
 "minecraft:iron_ingot", // fertilizer item
 10, // min growth ticks applied
 20 // max growth ticks applied
 // ex: 10 to 20 ticks will be randomly given to the crop
)
})

https://www.curseforge.com/minecraft/mc-mods/kubejs-botany-pots
https://modrinth.com/mod/kubejs-botany-pots
https://www.curseforge.com/minecraft/mc-mods/botany-pots

// fired everytime a crop grows
BotanyPotsEvents.onCropGrow(event => {
 // event.random : the random object associated with the event
 // event.crop : a crop object describing the crop grown
 // event.originalDrops : an array of items this crop drops
 // event.drops : a writable array that changes the drops of the crop
 console.log([event.random, event.crop, event.originalDrops, event.drops].join(","))
})

Addons

KubeJS Ars Nouveau
Download: Curseforge, Modrinth

This addon allows you to create recipes for the mod Ars Nouveau

ServerEvents.recipes(event => {
	event.recipes.ars_nouveau.enchanting_apparatus(
 [
 "minecraft:sand",
 "minecraft:sand",
 "minecraft:sand",
 "minecraft:sand",
], // input items
	 "minecraft:gunpowder", // reagent
	 "minecraft:tnt", // output
	 1000, // source cost
	 // true // keep nbt of reagent, think like a smithing recipe
);

	event.recipes.ars_nouveau.enchantment(
 [
 "minecraft:sand",
 "minecraft:sand",
 "minecraft:sand",
 "minecraft:sand",
], // input items
 "minecraft:vanishing_curse", // applied enchantment
 1, // enchantment level
 1000, // source cost
);

	event.recipes.ars_nouveau.crush(
 "minecraft:tnt", // input block
 [
 Item.of("minecraft:sand").withChance(1.0),

https://www.curseforge.com/minecraft/mc-mods/kubejs-ars-nouveau
https://modrinth.com/mod/kubejs-ars-nouveau
https://www.curseforge.com/minecraft/mc-mods/ars-nouveau

// { item: Item.of("minecraft:sand").withChance(1.0), maxRolls: 4 }
] // loot table
 // true // drop the item in world?
);

 /*
 // this *does* work, but the recipe must be a valid glyph
 // in the tome, so this really can only be used to
 // replace a glyph's recipe
 event.recipes.ars_nouveau.glyph(
 "minecraft:tnt", // output item (glyph)
 [
 "minecraft:sand",
 "minecraft:gunpowder",
], // input items
 3 // exp cost
);
 */

 // accessible via `/ars-tome id` in this case `/ars-tome kubejs:not_glow`
 event.recipes.ars_nouveau.caster_tome(
 "Not-Glow Trap", // name,
 [
 "ars_nouveau:glyph_touch",
 "ars_nouveau:glyph_rune",
 "ars_nouveau:glyph_snare",
 "ars_nouveau:glyph_extend_time",
 "ars_nouveau:glyph_light"
], //spell
 "Doesn't snare the target and grant other targets Glowing.", // description
 16718260, // color
 {
 "family": "ars_nouveau:default",
 "pitch": 1.0,
 "volume": 1.0
 },
).id("kubejs:not_glow")

 event.recipes.ars_nouveau.imbuement(
 "minecraft:sand", // input item

 "minecraft:tnt", // output
 1000, // source cost
 []
)

 event.recipes.ars_nouveau.imbuement(
 "minecraft:red_sand", // input item
 "minecraft:tnt", // output
 1000, // source cost
 []
)
})

Addons

KubeJS ProjectE
Download: Curseforge, Modrinth

Lets you set the EMC values of items and the Philosopher's Stone transformations blocks with the
ProjectE mod. Examples are shown below.

Server side events (server_scripts):

Startup events (server_scripts):

ProjectEEvents.setEMC(event => {
 // sets the absolute emc value of an item
 event.setEMC("minecraft:cobblestone", 0) // alias. setEMCAfter

 // sets the emc of an item before anything else happens
 // this can sometimes result in this emc value not being
 // set, but also it allows for emc values to be generated
 // from this one; i.e crafting recipes
 event.setEMCBefore("minecraft:stick", 10000);
})

ItemEvents.rightClicked("minecraft:stick", event => {
 let player = event.player;

 // getPlayerEMC will always return a string
 // because emc values can get very large
 player.tell("Your emc is " + ProjectE.getPlayerEMC(player))

 ProjectE.addPlayerEMC(player, 1000);
 // the second argument can be a string because of the above
 // ProjectE.setPlayerEMC also exists

 player.tell("Your new emc is " + ProjectE.getPlayerEMC(player))
})

https://www.curseforge.com/minecraft/mc-mods/kubejs-projecte
https://modrinth.com/mod/kubejs-projecte
https://beta.curseforge.com/minecraft/mc-mods/projecte

ProjectEEvents.registerWorldTransmutations(event => {
 event.transform("minecraft:tnt", "minecraft:oak_planks");
})

Addons

KubeJS Powah
Download: Curseforge Modrinth

Allows you to create Energizing Orb recipes from the Powah mod.

Example:

ServerEvents.recipes(event => {
 // .energizing([inputs, ...], output, energy)
	event.recipes.powah.energizing(["minecraft:cobblestone"], "minecraft:tnt", 1000)
})

PowahEvents.registerCoolants(event => {
 // .addFluid(fluid, coolness)
	event.addFluid("minecraft:lava", 10);

 // .addSolid(fluid, coolness)
	event.addSolid("minecraft:cobblestone", 10);
})

PowahEvents.registerHeatSource(event => {
 // .add(block, hotness)
	event.add("minecraft:cobblestone", 10);
})

PowahEvents.registerMagmaticFluid(event => {
 // .add(fluid, hotness)
	event.add("minecraft:water", 10);
})

https://www.curseforge.com/minecraft/mc-mods/kubejs-powah
https://modrinth.com/mod/kubejs-powah
https://beta.curseforge.com/minecraft/mc-mods/powah-rearchitected

Addons

KJSPKG
KJSPKG is a package manager for KubeJS that can allow you to download different example scripts
and libraries into your instance. It will automatically manage minecraft version, modloader,
dependency and incompatibility control. It works with KubeJS 6 (1.19), KubeJS Legacy (1.16/1.18)
and should even work with some pre-legacy versions (1.12)!

Installation
1. Download either the CLI version of KJSPKG or the WIP GUI client.
2. Open a terminal in the kubejs directory inside of your instance.
3. Run kjspkg init and select your minecraft version/modloader.

Now you are able to install packages into your instance.

Usage
To download a package, run kjspkg install <package_name>
To remove a package, run kjspkg remove <package_name>
To search for a package, run kjspkg search <query>
To list all packages in your instance, run kjspkg list
To list all of the commands available, run kjspkg help

https://github.com/Modern-Modpacks/kjspkg
https://wiki.latvian.dev/uploads/images/gallery/2023-04/kOqnnW5AOQwxfiPO-kjspkgbig.png
https://github.com/Modern-Modpacks/kjspkg/tree/main#installation--update
https://github.com/Modern-Modpacks/kjspkg-gui

Adding your own package
If you have an example script you would like to share on KJSPKG, check out the "Adding your own
package" section of KJSPKG's README. We are always happy to add more scripts from different
authors to our list!

Notable packages
more-recipe-types (Legacy, 1.16.5/1.18.2, Forge/Fabric)
This package simplifies the process of adding recipes to custom machines from different mods
without downloading any addons. For example, this bit of code will add a recipe transforming a
stick and an iron ingot to Powah's Energizing Orb:

For other types, check out the README file on GitHub.

create-depot-crafting (Legacy, 1.18.2, Fabric)
This package allows you to add custom recipes that use manual combination on the create depot.
Example from the README:

Showcase:

onEvent('recipes', event => {
	global.mrt.powah.energizing(event, "minecraft:gold_ingot", ["minecraft:stick", "minecraft:iron_ingot"], 1000);
})

onEvent('block.right_click', event => {
 global.recipes.create.manual_depot_application(event,
 // Output
 Item.of('expandeddelight:cheese_sandwich'),
 // Inputs
 Ingredient.of('minecraft:bread'), // On depot
 Ingredient.of('expandeddelight:cheese_slice') // In hand
)
});

https://github.com/Modern-Modpacks/kjspkg#adding-your-own-package
https://github.com/Modern-Modpacks/kjspkg#adding-your-own-package
https://kjspkglookup.modernmodpacks.site/#more-recipe-types
https://www.curseforge.com/minecraft/mc-mods/powah
https://github.com/gcatkjspkgs/kubejs-more-recipe-types/blob/main/README.md
https://kjspkglookup.modernmodpacks.site/#create-depot-crafting

If you're looking for a Forge port of this package, checkout create-depot-crafting-forge. A lot of the
times KJSPKG's packages' names end in -6 if they are a port of a different package for KubeJS 6
(1.19), and end in -<modloader> if they are a port of another package for a different modloader as
per naming convention.

soljs (KubeJS 6, 1.19.2, Forge/Fabric)

This package ports the mechanics of the 1.12.2 version of The Spice of Life mod to 1.19 using only
KubeJS. It works like a standalone mod and does not require any configuration. Depends on
AppleSkin.

https://wiki.latvian.dev/uploads/images/gallery/2023-04/cT0JKE97LRUTTcgy-68747470733a2f2f692e6962622e636f2f426e59505671572f6578616d706c652d6d696e2e676966.gif
https://kjspkglookup.modernmodpacks.site/#create-depot-crafting-forge
https://kjspkglookup.modernmodpacks.site/#soljs
https://www.curseforge.com/minecraft/mc-mods/the-spice-of-life
https://www.curseforge.com/minecraft/mc-mods/appleskin

Addons

KubeJS Offline
Documentation
Dynamic Documentation in a
single html page.
Download: Curseforge, Modrinth

KubeJS Offline is a mod that dumps all class data at runtime into a single html file using a single
command. `/kubejs_offline`.

Preview Generated Documentation Pages:
1.19.2 Forge 1.19.2 Fabric

1.18.2 Forge 1.18.2 Fabric

Enigmatica 9

How does it work?
When you execute the KubeJS Offline command, a scan of the Java runtime is performed to find
what classes exist at that time. This is important as mods might provide new event classes and
possibly new methods to existing Minecraft classes.

After the mod has searched what classes exist and are available at that time, it then proceeds to
compress that data down into a json object.

It records everything from the full class name, package info, super classes, sub-classes, generic
implementations, fields, methods, as well as their relationships to other classes.

https://www.curseforge.com/minecraft/mc-mods/kubejs-offline
https://modrinth.com/mod/kubejs-offline
https://hunter19823.github.io/kubejsoffline/1.19.2/forge
https://hunter19823.github.io/kubejsoffline/1.19.2/fabric
https://hunter19823.github.io/kubejsoffline/1.18.2/forge
https://hunter19823.github.io/kubejsoffline/1.18.2/fabric
https://hunter19823.github.io/kubejsoffline/modpacks/engimatica9

This data is then used to create an html page which then runs dependency-less JavaScript to
generate the webpage html elements.

You can then open the file in a modern web browser, no need to host it on a server or anything like
that.

Additional Features:
You can right click inside the webpage to toggle certain tables, private fields, and other info that
you may not need.

There is a search feature you can activate by adding a question mark to the end of the url.
An example of this search is:

https://hunter19823.github.io/kubejsoffline/1.19.2/forge#any--EventJS

https://hunter19823.github.io/kubejsoffline/1.19.2/forge#any--EventJS

Addons

KubeJS Farmers Delight
Download: Curseforge

Example:

Startup Scripts:

Server Scripts:

StartupEvents.registry("block", event => {
 event.create('example_pie', 'farmersdelight:pie')
 .sliceItem('kubejs:example_pie_slice')
 .displayName('Example Pie')
 event.create('example_feast', 'farmersdelight:feast')
 .servingsAmount(3)
 .servingItems(['kubejs:example_feast_serving', 'kubejs:example_feast_serving_2'])
 .displayName('Example Feast')
})

StartupEvents.registry("item", event => {
 event.create('example_knife', 'farmersdelight:knife')
 .displayName('Example Knife')
 .tier('diamond')
})

ServerEvents.recipes(event => {
	event.recipes.farmersdelight.cutting(
 "minecraft:cobblestone",
 "#forge:tools/pickaxes", // tool
 [// results
 "minecraft:iron_ore",
 Item.of("minecraft:diamond")
 .withChance(0.1)
],
 // "" // sound

https://www.curseforge.com/minecraft/mc-mods/kubejs-delight

);

	event.recipes.farmersdelight.cooking(
	 ["minecraft:cobblestone"],
	 "minecraft:iron_ore", // output
	 30, // exp
	 10, // cookTime
	 "minecraft:bowl", // container
);
})

Addons

KubeJS Industrial Foregoing
Download: Curseforge

This lets you modify and create various recipes for Industrial Foregoing

ServerEvents.recipes(event => {
 event.recipes.industrialforegoing.dissolution_chamber(
 ["minecraft:tnt"], // input items
 "minecraft:water", // input fluid
 "minecraft:sand", // output item
 100 // time
)
// .outputFluid("minecraft:water"); // output fluid

 event.recipes.industrialforegoing.fluid_extractor(
 "minecraft:tnt", // input block
 "minecraft:sand", // output block
 0.5, // break chance
 "minecraft:lava" // output fluid
)

 event.recipes.industrialforegoing.stonework_generate(
 "minecraft:tnt",
 100, // water needed
 100, // lava needed
 50, // water consumed
 50 // lava consumed
)
 event.recipes.industrialforegoing.crusher(// the pickaxe action in the stonework factory
 "minecraft:tnt", // input item
 "minecraft:sand" // output item
)

 event.recipes.industrialforegoing.laser_drill_ore(
 "minecraft:tnt", // output

https://curseforge.com/minecraft/mc-mods/kubejs-industrial-foregoing/
https://www.curseforge.com/minecraft/mc-mods/industrial-foregoing

 "minecraft:sand", // catalyst
 [//rarity, see below for more details
 {
 "blacklist": {
 "type": "minecraft:worldgen/biome",
 "values": [
 "minecraft:the_end",
 "minecraft:the_void",
 "minecraft:small_end_islands",
 "minecraft:end_barrens",
 "minecraft:end_highlands",
 "minecraft:end_midlands"
]
 },
 "depth_max": 16,
 "depth_min": 5,
 "weight": 4,
 "whitelist": {}
 },
 {
 "blacklist": {
 "type": "minecraft:worldgen/biome",
 "values": [
 "minecraft:the_end",
 "minecraft:the_void",
 "minecraft:small_end_islands",
 "minecraft:end_barrens",
 "minecraft:end_highlands",
 "minecraft:end_midlands"
]
 },
 "depth_max": 255,
 "depth_min": 0,
 "weight": 1,
 "whitelist": {}
 }
]
)

 event.recipes.industrialforegoing.laser_drill_fluid(

 "minecraft:water", // output
 "minecraft:sand", // catalyst
 [// rarity, see wiki for more details
 {
 "blacklist": {
 "type": "minecraft:worldgen/biome",
 "values": [
 "minecraft:the_end",
 "minecraft:the_void",
 "minecraft:small_end_islands",
 "minecraft:end_barrens",
 "minecraft:end_highlands",
 "minecraft:end_midlands"
]
 },
 "depth_max": 16,
 "depth_min": 5,
 "weight": 4,
 "whitelist": {}
 },
 {
 "blacklist": {
 "type": "minecraft:worldgen/biome",
 "values": [
 "minecraft:the_end",
 "minecraft:the_void",
 "minecraft:small_end_islands",
 "minecraft:end_barrens",
 "minecraft:end_highlands",
 "minecraft:end_midlands"
]
 },
 "depth_max": 255,
 "depth_min": 0,
 "weight": 1,
 "whitelist": {}
 }
],
 "minecraft:zombie" // entity required below
)

})

