
Events
List of Events
Recipes
Tags
Custom Items
Item modification
Custom Blocks
Block Modification
Custom Tiers
Worldgen

List of Events
This is a list of all events. It's possible that not all events are listed here, but this list will be updated
regularly.

Click on event ID to open its class and see information, fields, and methods.

Type descriptions:

Startup: scripts go into the /kubejs/startup_scripts/ folder. Startup scripts run once, at
startup, on both the client and server. Most events that require registering or modifying
something at game start (like custom blocks, items, and fluids) will be Startup events.
Server: scripts go into the /kubejs/server_scripts/ folder. It will be reloaded when you run
/reload command. Server events are always accessible, even in single-player worlds. Most
events that make changes to the world while the game is running (such as breaking
blocks, teleporting players, or adding recipes) will go here.
Server Startup: same as Server, and the event will be fired at least once when the
server loads.
Client: scripts go into the /kubejs/client_scripts/ folder. Will be reloaded when you press
F3+T . Most changes that are per-client (such as resource packs, Painter, and JEI) are
client events.
Client Startup: Same as Client, and the event will be fired at least once when the client
loads.

Base KubeJS Events
Folder Method Cancellable

/startup_scripts/ StartupEvents.init (link) ❌

/startup_scripts/ StartupEvents.postInit (link) ❌

Folder Method Cancellable

/startup_scripts/ StartupEvents.registry (fluid)
StartupEvents.registry (block)
StartupEvents.registry (item)
StartupEvents.registry (enchantment)
StartupEvents.registry (mob effects)
StartupEvents.registry (sound event)
StartupEvents.registry (block entity

type)
StartupEvents.registry (potion)
StartupEvents.registry (particle type)
StartupEvents.registry (painting variant)
StartupEvents.registry (custom stat)
StartupEvents.registry (point of interest

type)
StartupEvents.registry (villager type)
StartupEvents.registry (villager

profession)

❌

/client_scripts/ ClientEvents.highPriorityAssets (link) ❌

/client_scripts/ ClientEvents.init (link) ❌

/client_scripts/ ClientEvents.loggedIn (link) ❌

/client_scripts/ ClientEvents.loggedOut (link) ❌

/client_scripts/ ClientEvents.tick (link) ❌

/client_scripts/ ClientEvents.painterUpdated (link) ❌

/client_scripts/ ClientEvents.leftDebugInfo (link) ❌

/client_scripts/ ClientEvents.rightDebugInfo (link) ❌

/client_scripts/ ClientEvents.paintScreen (link) ❌

/server_scripts/ ServerEvents.lowPriorityData (link) ❌

/server_scripts/ ServerEvents.highPriorityData (link) ❌

/server_scripts/ ServerEvents.loaded (link) ❌

https://wiki.latvian.dev/books/kubejs/page/custom-blocks
https://mods.latvian.dev/books/kubejs/page/custom-items

Folder Method Cancellable

/server_scripts/ ServerEvents.unloaded (link) ❌

/server_scripts/ ServerEvents.tick (link) ❌

/server_scripts/ ServerEvents.tags (link) ❌

/server_scripts/ ServerEvents.commandRegistry (link) ❌

/server_scripts/ ServerEvents.command (link) ✅

/server_scripts/ ServerEvents.customCommand (link) ✅

/server_scripts/ ServerEvents.recipes (link) ❌

/server_scripts/ ServerEvents.afterRecipes (link) ❌

/server_scripts/ ServerEvents.specialRecipeSerializers
(link)

❌

/server_scripts/ ServerEvents.compostableRecipes (link) ❌

/server_scripts/ ServerEvents.recipeTypeRegistry (link) ❌

/server_scripts/ ServerEvents.genericLootTables (link) ❌

/server_scripts/ ServerEvents.blockLootTables (link) ❌

/server_scripts/ ServerEvents.entityLootTables (link) ❌

/server_scripts/ ServerEvents.giftLootTables (link) ❌

/server_scripts/ ServerEvents.fishingLootTables (link) ❌

/server_scripts/ ServerEvents.chestLootTables (link) ❌

/server_scripts/ LevelEvents.loaded (link) ❌

/server_scripts/ LevelEvents.unloaded (link) ❌

/server_scripts/ LevelEvents.tick (link) ❌

/server_scripts/ LevelEvents.beforeExplosion (link) ✅

https://mods.latvian.dev/books/kubejs/page/tags

Folder Method Cancellable

/server_scripts/ LevelEvents.afterExplosion (link) ❌

/startup_scripts/ WorldgenEvents.add (link) ❌

/startup_scripts/ WorldgenEvents.remove (link) ❌

/client_scripts/ NetworkEvents.fromServer (link) ✅

/server_scripts/ NetworkEvents.fromClient (link) ✅

/startup_scripts/ ItemEvents.modification (link) ❌

/startup_scripts/ ItemEvents.toolTierRegistry (link) ❌

/startup_scripts/ ItemEvents.armorTierRegistry (link) ❌

/server_scripts/ ItemEvents.rightClicked (link) ✅

/server_scripts/ ItemEvents.canPickUp (link) ✅

/server_scripts/ ItemEvents.pickedUp (link) ❌

/server_scripts/ ItemEvents.dropped (link) ✅

/server_scripts/ ItemEvents.entityInteracted (link) ✅

/server_scripts/ ItemEvents.crafted (link) ❌

/server_scripts/ ItemEvents.smelted (link) ❌

/server_scripts/ ItemEvents.foodEaten (link) ✅

/client_scripts/ ItemEvents.tooltip (link) ❌

/startup_scripts/ ItemEvents.modelProperties (link) ❌

/client_scripts/ ItemEvents.clientRightClicked (link) ❌

/client_scripts/ ItemEvents.clientLeftClicked (link) ❌

/server_scripts/ ItemEvents.firstRightClicked (link) ❌

https://wiki.latvian.dev/books/kubejs/page/custom-tiers#bkmrk-tool-tiers
https://wiki.latvian.dev/books/kubejs/page/custom-tiers#bkmrk-armour-tiers

Folder Method Cancellable

/server_scripts/ ItemEvents.firstLeftClicked (link) ❌

/startup_scripts/ BlockEvents.modification (link) ❌

/server_scripts/ BlockEvents.rightClicked (link) ✅

/server_scripts/ BlockEvents.leftClicked (link) ✅

/server_scripts/ BlockEvents.placed (link) ✅

/server_scripts/ BlockEvents.broken (link) ✅

/server_scripts/ BlockEvents.detectorChanged (link) ❌

/server_scripts/ BlockEvents.detectorPowered (link) ❌

/server_scripts/ BlockEvents.detectorUnpowered (link) ❌

/server_scripts/ BlockEvents.farmlandTrampled (link) ❌

/server_scripts/ EntityEvents.death (link) ✅

/server_scripts/ EntityEvents.hurt (link) ✅

/server_scripts/ EntityEvents.checkSpawn (link) ✅

/server_scripts/ EntityEvents.spawned (link) ✅

/server_scripts/ PlayerEvents.loggedIn (link) ❌

/server_scripts/ PlayerEvents.loggedOut (link) ❌

/server_scripts/ PlayerEvents.respawned (link) ❌

/server_scripts/ PlayerEvents.tick (link) ❌

/server_scripts/ PlayerEvents.chat (link) ✅

/server_scripts/ PlayerEvents.decorateChat (link) ❌

/server_scripts/ PlayerEvents.advancement (link) ✅

/server_scripts/ PlayerEvents.inventoryOpened (link) ❌

Folder Method Cancellable

/server_scripts/ PlayerEvents.inventoryClosed (link) ❌

/server_scripts/ PlayerEvents.inventoryChanged (link) ❌

/server_scripts/ PlayerEvents.chestOpened (link) ❌

/server_scripts/ PlayerEvents.chestClosed (link) ❌

Mod Compatibility

Just Enough Items (JEI)

Folder Method Cancellable

/client_scripts/ JEIEvents.subtypes (source) ❌

/client_scripts/ JEIEvents.hideItems (source) ❌

/client_scripts/ JEIEvents.hideFluids (source) ❌

/client_scripts/ JEIEvents.hideCustom (source) ❌

/client_scripts/ JEIEvents.removeCategories (source) ❌

/client_scripts/ JEIEvents.removeRecipes (source) ❌

/client_scripts/ JEIEvents.addItems (source) ❌

/client_scripts/ JEIEvents.addFluids (source) ❌

/client_scripts/ JEIEvents.information (source) ❌

Roughly Enough Items (REI)

Folder Method Cancellable

/client_scripts/ REIEvents.hide (source) ❌

These events are enabled when certain other mods are present.

https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/JEISubtypesEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/HideCustomJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/RemoveJEICategoriesEvent.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/RemoveJEIRecipesEvent.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/AddJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/AddJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/jei/InformationJEIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/HideREIEventJS.java

/client_scripts/ REIEvents.add (source) ❌

/client_scripts/ REIEvents.information (source) ❌

/client_scripts/ REIEvents.removeCategories (source) ❌

/client_scripts/ REIEvents.groupEntries (source) ❌

GameStages

Folder Method Cancellable

/server_scripts/ GameStageEvents.stageAdded (source) ❌

/server_scripts/ GameStageEvents.stageRemoved (source
)

❌

https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/AddREIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/InformationREIEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/RemoveREICategoryEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/common/src/main/java/dev/latvian/mods/kubejs/integration/rei/GroupREIEntriesEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/gamestages/GameStageEventJS.java
https://github.com/KubeJS-Mods/KubeJS/blob/1.19/main/forge/src/main/java/dev/latvian/mods/kubejs/integration/forge/gamestages/GameStageEventJS.java

Recipes

Contents
How Recipes & Callbacks Work
Adding Recipes

Shaped
Shapeless
Smithing
Smelting & other Cooking
Stonecutting
Custom (JSON)

Removing Recipes
Modifying & Replacing Recipes
Helpers, Efficiency and Advanced Ingredients (a.k.a. "how to avoid repeating yourself")

Recipes, Callbacks, and You ↑
The recipe event can be used to add, remove, or replace recipes.

Any script that modifies recipes should be placed in the kubejs/server_scripts folder, and can be
reloaded at any time with /reload .

Any modifications to the recipes should be done within the context of a recipes event. This means
that we need to register an "event listener" for the ServerEvents.recipes event, and give it some code
to execute whenever the game is ready to modify recipes. Here's how we tell KubeJS to execute
some code whenever it's recipe time:

This page is still under development. It is not complete, and subject to change at any time.

The recipe event is a server event.

/*
 * ServerEvents.recipes() is a function that accepts another function,

In the next sections, you can see what to put inside your callback.

Adding Recipes ↑

The following is all code that should be placed inside your recipe callback.

Shaped↑
Shaped recipes are added with the event.shaped() method. Shaped recipes must have their
ingredients in a specific order and shape in order to match the player's input. The arguments to
event.shaped() are:

1. The output item, which can have a count of 1-64
2. An array (max length 3) of crafting table rows, represented as strings (max length 3).

Spaces represent slots with no item, and letters represent items. The letters don't have to
mean anything; you explain what they mean in the next argument.

3. An object mapping the letters to Items, like {letter: item} . Input items must have a count
of 1.

If you want to force strict positions on the crafting grid or disable mirroring, see Methods of Custom
Recipes.

 * called the "callback", as a parameter. The callback gets run when the
 * server is working on recipes, and then we can make our own changes.
 * When the callback runs, it is also known as the event "firing".
*/

ServerEvents.recipes(event => { //listen for the "recipes" server event.
 // You can replace `event` with any name you like, as
 // long as you change it inside the callback too!

 // This part, inside the curly braces, is the callback.
 // You can modify as many recipes as you like in here,
 // without needing to use ServerEvents.recipes() again.

 console.log('Hello! The recipe event has fired!')
})

event.shaped('3x minecraft:stone', [// arg 1: output
 'A B',

Shapeless↑
Shapeless recipes are added with the event.shapeless() method. Players can put ingredients of
shapeless recipes anywhere on the grid and it will still craft. The arguments to event.shapeless() are:

1. The output item
2. An array of input items. The total input items' count must be 9 at most.

Smithing↑
Smithing recipes have 2 inputs and one output and are added with the event.smithing() method.
Smithing recipes are crafted in the smithing table.

Smelting & Cooking↑
Cooking recipes are all very similar, accepting one input (a single item) and giving one output
(which can be up to 64 of the same item). The fuel cannot be changed in this recipe event and
should be done with tags instead.

Smelting recipes are added with event.smelting() , and require the regular Furnace.
Blasting recipes are added with event.blasting() , and require the Blast Furnace.
Smoking recipes are added with event.smoking() , and require the Smoker.

 ' C ', // arg 2: the shape (array of strings)
 'B A'
], {
 A: 'minecraft:andesite',
 B: 'minecraft:diorite', //arg 3: the mapping object
 C: 'minecraft:granite'
 }
)

event.shapeless('3x minecraft:dandelion', [// arg 1: output
 'minecraft:bone_meal',
 'minecraft:yellow_dye', 	//arg 2: the array of inputs
 '3x minecraft:ender_pearl'
])

event.smithing(
 'minecraft:netherite', // arg 1: output
 'minecraft:iron_ingot', // arg 2: the item to be upgraded
 'minecraft:black_dye' // arg 3: the upgrade item
)

Campfire cooking recipes are added with event.campfireCooking() , and require the Campfire.

Stonecutting↑
Like the cooking recipes, stonecutting recipes are very simple, with one input (a single item) and
one output (which can be up to 64 of the same item). They are added with the event.stonecutting()
method.

Custom/Modded JSON recipes↑
If a mod supports Datapack recipes, you can add recipes for it without any addon mod support!
Unfortunately, we can't give specific advice because every mod's layout is different, but if a mod
has a GitHub (most do!) or other source code, you can find the relevant JSON files in
/src/generated/resources/data/<modname>/recipes/ . Otherwise, you may be able to find it by unzipping
the mod's .jar file.

Here's an example of adding a Farmer's Delight cutting board recipe, which defines an input,
output, and tool taken straight from their GitHub. Obviously, you can substitute any of the items
here to make your own recipe!

// Cook 1 stone into 3 gravel in a Furnace:
event.smelting('3x minecraft:gravel', 'minecraft:stone')

// Blast 1 iron ingot into 10 nuggets in a Blast Furnace:
event.blasting('10x minecraft:iron_nugget', 'minecraft:iron_ingot')

// Smoke glass into tinted glass in the Smoker:
event.smoking('minecraft:tinted_glass', 'minecraft:glass')

// Burn sticks into torches on the Campfire:
event.campfireCooking('minecraft:torch', 'minecraft:stick')

//allow cutting 3 sticks from any plank on the stonecutter
event.stonecutting('3x minecraft:stick', '#minecraft:planks')

// Slice cake on a cutting board!
event.custom({
 type: 'farmersdelight:cutting',
 ingredients: [
 { item: 'minecraft:cake' }
],
 tool: { tag: 'forge:tools/knives' },

https://github.com/vectorwing/FarmersDelight/blob/1.18.2/src/generated/resources/data/farmersdelight/recipes/cutting/cake.json

Here's another example of event.custom() for making a Tinkers' Construct alloying recipe, which
defines inputs, an output, and a temperature straight from their GitHub (conditions removed):

Removing Recipes↑

Removing recipes can be done with the event.remove() method. It accepts 1 argument: a Recipe
Filter. A filter is a set of properties that determine which recipe(s) to select. There are many
conditions with which you can select a recipe:

by output item {output: '<item_id>'}
by input item(s) {input: '<item_id>'}
by mod {mod: '<mod_id>'}
by the unique recipe ID {id: '<recipe_id>'}
combinations of the above:

Require ALL conditions to be met: {condition1: 'value', condition2: 'value2'}
Require ANY of the conditions to be met: [{condition_a: 'true'}, {condition_b: 'true'}]
Require the condition NOT be met: {not: {condition: 'requirement'}}

All of the following can go in your recipe callback, as normal:

 result: [
 { item: 'farmersdelight:cake_slice', count: 7 }
]
})

// Adding the Molten Electrum alloying recipe from Tinkers' Construct
event.custom({
 type: 'tconstruct:alloy',
 inputs: [
 { tag: 'forge:molten_gold', amount: 90 },
 { tag: 'forge:molten_silver', amount: 90 }
],
 result: { fluid: 'tconstruct:molten_electrum', amount: 180 },
 temperature: 760
})

// A blank condition removes all recipes (obviously not recommended):
event.remove({})

// Remove all recipes where output is stone pickaxe:

https://github.com/SlimeKnights/TinkersConstruct/blob/1.18.2/src/generated/resources/data/tconstruct/recipes/smeltery/alloys/molten_electrum.json

To find a recipe's unique ID, turn on advanced tooltips using the F3 + H keys (you will see an
announcement in chat), then hover over the [+] symbol (if using REI) or the output (if using JEI).

Modifying & Replacing Recipes ↑
You can bulk-modify supported recipes using event.replaceInput() and event.replaceOutput() . They
each take 3 arguments:

1. A filter, similar to the ones used when removing recipes
2. The ingredient to replace
3. The ingredient to replace it with (can be a tag)

event.remove({ output: 'minecraft:stone_pickaxe' })

// Remove all recipes where output has the Wool tag:
event.remove({ output: '#minecraft:wool' })

// Remove all recipes where any input has the Redstone Dust tag:
event.remove({ input: '#forge:dusts/redstone' })

// Remove all recipes from Farmer's Delight:
event.remove({ mod: 'farmersdelight' })

// Remove all campfire cooking recipes:
event.remove({ type: 'minecraft:campfire_cooking' })

// Remove all recipes that grant stone EXCEPT smelting recipes:
event.remove({ not: { type: 'minecraft:smelting' }, output: 'stone' })

// Remove recipes that output cooked chicken AND are cooked on a campfire:
event.remove({ output: 'minecraft:cooked_chicken', type: 'minecraft:campfire_cooking' })

// Remove any blasting OR smelting recipes that output minecraft:iron_ingot:
event.remove([{ type: 'minecraft:smelting', output: 'minecraft:iron_ingot' }, { type: 'minecraft:blasting', output:
'minecraft:iron_ingot' }])

// Remove a recipe by ID. in this case, data/minecraft/recipes/glowstone.json:
// Note: Recipe ID and output are different!
event.remove({ id: 'minecraft:glowstone' })

https://www.curseforge.com/minecraft/mc-mods/roughly-enough-items
https://www.curseforge.com/minecraft/mc-mods/jei

For example, let's say you were removing all sticks and wanted to make people craft things with
saplings instead. Inside your callback you would put:

Advanced Techniques ↑
Helper functions ↑
Are you making a lot of similar recipes? Feel like you're typing the same text over and over? Try
helper functions! Helper functions will perform repeated actions in much less space by taking in
only the parts that are relevant, then doing the repetitive stuff for you!

Here's a helper function, which allows you to make items by crafting a flower pot around the item
you specify.

Looping ↑

event.replaceInput(
 { input: 'minecraft:stick' }, // Arg 1: the filter
 'minecraft:stick', // Arg 2: the item to replace
 '#minecraft:saplings' // Arg 3: the item to replace it with
 // Note: tagged fluid ingredients do not work on Fabric, but tagged items do.
)

ServerEvents.recipes(event => {
 let potting = (output, pottedInput) => {
 event.shaped(output, [
 'BIB',
 ' B '
], {
 B: 'minecraft:brick',
 I: pottedInput
 })
 }

 //Now we can make many 'potting' recipes without typing that huge block over and over!
 potting('kubejs:potted_snowball', 'minecraft:snowball')
 potting('kubejs:potted_lava', 'minecraft:lava_bucket')
 potting('minecraft:blast_furnace', 'minecraft:furnace')
})

In addition to helper functions, you can also loop through an array to perform an action on every
item in the array.

Tags

The tags event takes an extra parameter that determines which registry it's adding tags to. You will
generally only need item, block, and fluid tags. However, it does support adding tags to any
registry, including other mods ones. For mod ones make sure to include the namespace!

The tag event is a server event.

Tags are per item/block/fluid/entity_type and as such cannot be added based on things like
NBT data!

// Listen to item tag event
ServerEvents.tags('item', event => {
 // Get the #forge:cobblestone tag collection and add Diamond Ore to it
 event.add('forge:cobblestone', 'minecraft:diamond_ore')

 // Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
 event.remove('forge:cobblestone', 'minecraft:mossy_cobblestone')

 // Get #forge:ingots/copper tag and remove all entries from it
 event.removeAll('forge:ingots/copper')

 // Required for FTB Quests to check item NBT
 event.add('itemfilters:check_nbt', 'some_item:that_has_nbt_types')

 // You can create new tags the same way you add to existing, just give it a name
 event.add('forge:completely_new_tag', 'minecraft:clay_ball')

 // It supports adding tags to tags as well. Just prefix the second tag with #
 event.add('c:stones', '#forge:stone')

 // Removes all tags from this entry
 event.removeAllTagsFrom('minecraft:stick')

 // Add all items from the forge:stone tag to the c:stone tag, unless the id contains diorite
 const stones = event.get('forge:stone').getObjectIds()
 const blacklist = Ingredient.of(/.*diorite.*/)

 stones.forEach(stone => {
 if (!blacklist.test(stone)) event.add('c:stone', stone)
 })
})

Recipes use item tags, not block or fluid tags. Even if items representing those are blocks,
like minecraft:cobblestone , it still uses an item tag for recipes.

// Listen to the block tag event
ServerEvents.tags('block', event => {
 // Add tall grass to the climbable tag. This does make it climbable!
 event.add('minecraft:climbable', 'minecraft:tall_grass')
})

Custom Items

Custom items are created in a startup script. They cannot be reloaded without restarting the game.
The event is not cancellable.

Valid item types:

basic (this is the default)
sword
pickaxe
axe
shovel
shears
hoe
helmet
chestplate
leggings

The custom item event is a startup event.

// Listen to item registry event
StartupEvents.registry('item', e => {
 // The texture for this item has to be placed in kubejs/assets/kubejs/textures/item/test_item.png
 // If you want a custom item model, you can create one in Blockbench and put it in
kubejs/assets/kubejs/models/item/test_item.json
 e.create('test_item')

 // If you want to specify a different texture location you can do that too, like this:
 e.create('test_item_1').texture('mobbo:item/lava') // This texture would be located at
kubejs/assets/mobbo/textures/item/lava.png

 // You can chain builder methods as much as you like
 e.create('test_item_2').maxStackSize(16).glow(true)

 // You can specify item type as 2nd argument in create(), some types have different available methods
 e.create('custom_sword', 'sword').tier('diamond').attackDamageBaseline(10.0)
})

boots

Other methods item builder supports: [you can chain these methods after create()]

maxStackSize(size)
displayName(name)
unstackable()
maxDamage(damage) This is the item's durability, not actual weapon damage.
burnTime(ticks)
containerItem(item_id)
rarity('rarity')
tool(type, level)
glow(true/false)
tooltip(text...)
group('group_id')
color(index, colorHex)
texture(customTextureLocation)
parentModel(customParentModelLocation)
food(foodBuilder => ...) For full syntax see below

Methods available if you use a tool type ('sword' , 'pickaxe' , 'axe' , 'shovel' or 'hoe'):

tier('toolTier')

modifyTier(tier => ...) Same syntax as custom tool tier, see Custom Tiers
attackDamageBaseline(damage) You only want to modify this if you are creating a custom
weapon such as Spear, Battleaxe, etc.
attackDamageBonus(damage)
speedBaseline(speed) Same as attackDamageBaseline, only modify for custom weapon
types
speed(speed)

Default available tool tiers:

wood
stone
iron
gold
diamond
netherite

Methods available if you use an armour type ('helmet', 'chestplate', 'leggings' or 'boots'):

tier('armorTier')

modifyTier(tier => ...) Same syntax as custom armor tier, see Custom Tiers

https://mods.latvian.dev/books/kubejs/page/custom-tiers
https://mods.latvian.dev/books/kubejs/page/custom-tiers

Default available armor tiers:

leather
chainmail
iron
gold
diamond
turtle
netherite

Vanilla group/creative tab IDs:

search
buildingBlocks
decorations
redstone
transportation
misc
food
tools
combat
brewing

Custom Foods
StartupEvents.registry('item', event => {
	event.create('magic_steak').food(food => {
		food
 		.hunger(6)
 		.saturation(6)//This value does not directly translate to saturation points gained
 		//The real value can be assumed to be:
 		//min(hunger * saturation * 2 + saturation, foodAmountAfterEating)
 		.effect('speed', 600, 0, 1)
 		.removeEffect('poison')
 		.alwaysEdible()//Like golden apples
 		.fastToEat()//Like dried kelp
 		.meat()//Dogs are willing to eat it
 		.eaten(ctx => {//runs code upon consumption
 		ctx.player.tell(Text.gold('Yummy Yummy!'))

 		//If you want to modify this code then you need to restart the game.
 		//However, if you make this code call a global startup function
 		//and place the function *outside* of an event handler
 		//then you may use the command:
 		// /kubejs reload startup_scripts
 		//to reload the function instantly.
 		//See example below
 	})
	})

 event.create('magicer_steak').unstackable().food(food => {
 food
 .hunger(7)
 .saturation(7)
 // This references the function below instead of having code directly, so it is reloadable!
 .eaten(ctx => global.myAwesomeReloadableFunction(ctx))
 })
})

global.myAwesomeReloadableFunction = ctx => {
 ctx.player.tell('Hello there!')
 ctx.player.tell(Text.of('Change me then reload with ').append(Text.red('/kubejs reload
startup_scripts')).append(' to see your changes!'))
}

Item modification

ItemEvents.modification is a startup script event used to modify various properties of existing items.

Available properties:

Property Value Type Description

maxStackSize int Sets the maximum stack size for
items. Default is 64 for most items.

maxDamage int Sets the maximum damage an item
can take before it is broken.

craftingRemainder Item Sets the item left behind in the
crafting grid when this item is used as
a crafting ingredient (like milk buckets
in the cake recipe). Most items do not
have one.

Item modification is a startup event.

ItemEvents.modification(event => {
 event.modify('minecraft:ender_pearl', item => {
 item.maxStackSize = 64
 item.fireResistant = true
 item.rarity = "UNCOMMON"
 })
 event.modify('minecraft:ancient_debris', item => {
 item.rarity = "RARE"
 item.burnTime = 16000
 })
 event.modify('minecraft:turtle_helmet', item => {
 item.rarity = "EPIC"
 item.maxDamage = 481
 item.craftingRemainder = Item.of('minecraft:scute').item
 })
})

Property Value Type Description

fireResistant boolean If this item burns in fire and lava. Most
items are false by default, but Ancient
Debris and Netherite things are not.

rarity Rarity Sets the items rarity. This is mainly
used for the name colour. COMMON
by default. Nether Stars and Elytra
are UNCOMMON, Golden Apples are
RARE and Enchanted Golden Apples
are EPIC.

burnTime int Sets the burn time (in ticks) in a
regular furnace for this item. Note
that Smokers and Blast Furnaces burn
fuel twice as fast. Coal is 1600.

foodProperties FoodProperties Sets the items food properties to the
provided properties. Can be null to
remove food properties.

foodProperties Consumer<FoodBuilder> Sets the properties according to the
consumer. See below for more info.

digSpeed float Sets the items digging speed to the
number provided. See table below for
defaults.

tier Consumer<MutableToolTier> Currently BROKEN! Sets the tools tier
according to the consumer. See below
for more info.

attackDamage double Sets the attack damage of this item.

attackSpeed double Sets the attack speed of this item

armorProtection double Sets the armor protection for this
item. 20 is a full armour bar.

armorToughness double Adds an armor toughness bonus.

armorKnockbackResistance double Add an armor knockback resistance
bonus. Can be negative. 1 is full
knockback resistance.

Tool defaults

https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-food
https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-tier
https://wiki.latvian.dev/books/kubejs/page/item-modification#bkmrk-tier

Tier level maxDamage digSpeed attackDamage
(this is a bonus
modified by the
tool type value,
not the final
value)

enchantmentVa
lue

Wood 0 59 2 0 15

Stone 1 131 4 1 5

Iron 2 250 6 2 14

Diamond 3 1561 8 3 10

Gold 0 32 12 0 22

Netherite 4 2031 9 4 15

Armor defaults
All boxes with multiple values are formatted [head, chest, legs, feet]. Boxes with single values are
the same for every piece.

Tier maxDamage armourProtection armorToughness armorKnockbackRe
sistance

Leather [65, 75, 80, 55] [1, 2, 3, 1] 0 0

Chain [195, 225, 240, 165] [1, 4, 5, 2] 0 0

Iron [195, 225, 240, 165] [2, 5, 6, 2] 0 0

Gold [91 ,105, 112, 77] [1, 3, 5, 2] 0 0

Diamond [429, 495, 528, 363] [3, 6, 8, 3] 2 0

Turtle (only has
helmet)

[325, nil, nil. nil] [2, nil, nil, nil] 0 0

Netherite [481, 555, 592, 407] [3, 6, 8, 3] 3 0.1

Elytra (not actually
armor)

[nil, 432, nil, nil] 0 0 0

Tier

Tools

Broken at the moment! https://github.com/KubeJS-Mods/KubeJS/issues/662. Use the non tier
methods instead.

https://github.com/KubeJS-Mods/KubeJS/issues/662

Property Value Type Description

uses int The maximum damage before this
tool breaks. Identical to maxDamage.

speed float The digging speed of this tool.

attackDamageBonus float The bonus attack damage of this tool.

level int The mining level of this tool.

enchantmentValue int The enchanting power of this tool. The
higher this is, the better the
enchantments at an Enchanting Table
are.

repairIngredient Ingredient The material used to repair this tool in
an anvil.

Armor
Doesnt actually exist/work at the moment. Sorry.

Food

ItemEvents.modification(event => {
 event.modify('golden_sword', item => {
 item.tier = tier => {
 tier.speed = 12
 tier.attackDamageBonus = 10
 tier.repairIngredient = '#forge:storage_blocks/gold'
 tier.level = 3
 }
 })
 event.modify('wooden_sword', item => {
 item.tier = tier => {
 tier.enchantmentValue = 30
 }
 })
})

ItemEvents.modification(event => {
 event.modify('minecraft:diamond', item => {
 item.foodProperties = food => {
 food.hunger(2)
 food.saturation(3)

Method Parameters Description

hunger int h Sets the hunger restored when this
item is eaten

saturation float s Sets the saturation mulitplier when
this food is eaten. This is not the final
value, it goes through some
complicated maths first

meat boolean flag (optional, true by
default)

Sets if this item is considered meat.
Meat can be fed to wolves to heal
them.

alwaysEdible boolean flag (optional, true by
default)

If this item can be eaten even if your
food bar is full. Chorus Fruit has this
true by default.

fastToEat boolean flag (optional, true by
default)

If this item is fast to eat, like Dried
Kelp.

effect ResourceLocation mobEffectId, int
duration, int amplifier, float
probability

Adds an effect to the entity who eats
this, like a Golden Apple

removeEffect MobEffect mobEffect Removes the effect from the entity
who eats this, like Honey Bottles
(poison).

eaten Consumer<FoodEatenEventJS> e BROKEN! Use ItemEvents.foodEaten
in server scripts instead.

 food.fastToEat(true)
 food.eaten(e => e.player.tell('you ate')) // this is broken, use ItemEvents.foodEaten instead.
 }
 })

 event.modify('pumpkin_pie', item => {
 item.foodProperties = null // make pumpkin pies inedible
 })
})

Custom Blocks

You can register many types of custom blocks in KubeJS. Here's the simplest way:

That's it! Launch the game, and assuming you've left KubeJS's auto-generated resources alone,
there should be a fully-textured block in the Creative menu under KubeJS (purple dye). KubeJS will
also generate the name "Example Block" for you.

To make modifications to this block, we use the block builder returned by the event.create() call.
The block builder allows us to chain together multiple modifications. Let's try making some of the
more common modifications:

All Block Builder Methods
In case it wasn't covered above, here's list of each method you can use when building a block.

displayName('name')

This is a startup script, meaning that you will need to restart your game each time you want
to make changes to it.

StartupEvents.registry("block", (event) => {
 event.create("example_block") // Create a new block with ID "kubejs:example_block"
})

StartupEvents.registry("block", (event) => {
 event.create("example_block") // Create a new block
 .displayName("My Custom Block") // Set a custom name
 .material("wood") // Set a material (affects the sounds and some properties)
 .hardness(1.0) // Set hardness (affects mining time)
 .resistance(1.0) // Set resistance (to explosions, etc)
 .tagBlock("my_custom_tag") // Tag the block with `#minecraft:my_custom_tag` (can have multiple tags)
 .requiresTool(true) // Requires a tool or it won't drop (see tags below)
 .tagBlock("my_namespace:my_other_tag") // Tag the block with `#my_namespace:my_other_tag`
 .tagBlock("mineable/axe") //can be mined faster with an axe
 .tagBlock("mineable/pickaxe") // or a pickaxe
 .tagBlock('minecraft:needs_iron_tool') // the tool tier must be at least iron
})

https://wiki.latvian.dev/books/kubejs/page/list-of-events

Sets the item's display name.
material('material') (No longer supported in 1.20+, see mapColor and soundType below!)

Set the item's material to an available material from the Materials List:

Materials List

air
amethyst
bamboo
bamboo_sapling
barrier
bubble_column
buildable_glass
cactus
cake
clay
cloth_decoration
decoration
dirt
egg
explosive
fire
froglight
frogspawn
glass
grass
heavy_metal
ice
ice_solid
lava
leaves
metal
moss
nether_wood
piston
plant
portal
powder_snow
replaceable_fireproof_plant
replaceable_plant
replaceable_water_plant
sand
sculk
shulker_shell
snow

sponge
stone
structural_air
top_snow
vegetable
water
water_plant
web
wood
wool

mapColor(MapColor) (1.20.1+ only)
Set block map color, you can find the entire list here, use ID in lowercase, e.g.
'color_light_green' .

soundType(SoundType) (1.20.1+ only)
Set block sound type:

SoundType List

Instead of using soundType(SoundType) you can also use one of these shortcut methods:

noSoundType()
woodSoundType()
stoneSoundType()
gravelSoundType()
grassSoundType()
sandSoundType()
cropSoundType()
glassSoundType()

wood
gravel
grass
lily_pad
stone
metal
glass
wool
sand
snow
powder_snow
ladder
anvil
slime_block

https://minecraft.fandom.com/wiki/Map_item_format#Base_colors

honey_block
wet_grass
coral_block
bamboo
bamboo_sapling
scaffolding
sweet_berry_bush
crop
hard_crop
vine
nether_wart
lantern
stem
nylium
fungus
roots
shroomlight
weeping_vines
twisting_vines
soul_sand
soul_soil
basalt
wart_block
netherrack
nether_bricks
nether_sprouts
nether_ore
bone_block
netherite_block
ancient_debris
lodestone
chain
nether_gold_ore
gilded_blackstone
candle
amethyst
amethyst_cluster
small_amethyst_bud
medium_amethyst_bud
large_amethyst_bud
tuff
calcite
dripstone_block
pointed_dripstone
copper

cave_vines
spore_blossom
azalea
flowering_azalea
moss_carpet
pink_petals
moss
big_dripleaf
small_dripleaf
rooted_dirt
hanging_roots
azalea_leaves
sculk_sensor
sculk_catalyst
sculk
sculk_vein
sculk_shrieker
glow_lichen
deepslate
deepslate_bricks
deepslate_tiles
polished_deepslate
froglight
frogspawn
mangrove_roots
muddy_mangrove_roots
mud
mud_bricks
packed_mud
hanging_sign
nether_wood_hanging_sign
bamboo_wood_hanging_sign
bamboo_wood
nether_wood
cherry_wood
cherry_sapling
cherry_leaves
cherry_wood_hanging_sign
chiseled_bookshelf
suspicious_sand
suspicious_gravel
decorated_pot
decorated_pot_cracked

You can construct your own sound type with new SoundType(volume, pitch, breakSound, stepSound,
placeSound, hitSound, fallSound) where volume and pitch are floats 0.0 - 1.0 (usually leave it as 1.0)
and all sounds are SoundEvents.

 property(BlockProperty)
Adds more blockstates to the block, like being waterlogged or facing a certain
direction. A full list of properties is available in the Properties List:

Properties List

Usage: .property(BlockProperties.PICKLES)

Boolean Properties (true/false):
attached,
berries,
bloom,
bottom,
can_summon,
conditional,
disarmed,
down,
drag,
east,
enabled,
extended,
eye,
falling,
hanging,
has_book,
has_bottle_0,
has_bottle_1,
has_bottle_2,
has_record,
inverted,
in_wall,
lit,
locked,
north,
occupied,
open,
persistent,
powered,
short,

shrieking,
signal_fire,
snowy,
south,
triggered,
unstable,
up,
vine_end,
waterlogged,
west

Integer properties:
age_1,
age_2,
age_3,
age_4,
age_5,
age_7,
age_15,
age_25,
bites,
candles,
delay,
distance,
eggs,
hatch,
layers,
level,
level_cauldron,
level_composter,
level_flowing,
level_honey,
moisture,
note,
pickles,
power,
respawn_anchor_charges,
rotation_16,
stability_distance,
stage

Directional Properties:

facing,
facing_hopper,
horizontal_facing,
vertical_direction

Other (enum) Properties:
attach_face,
axis,
bamboo_leaves,
bed_part,
bell_attachment,
chest_type,
door_hinge,
double_block_half,
dripstone_thickness,
east_redstone,
east_wall,
half,
horizontal_axis,
mode_comparator,
north_redstone,
north_wall,
noteblock_instrument,
orientation,
piston_type,
rail_shape,
rail_shape_straight,
sculk_sensor_phase,
slab_type,
south_redstone,
south_wall,
stairs_shape,
structureblock_mode,
tilt,
west_redstone,
west_wall

 tagBlock('namespace:tag_name')
adds a tag to the block

tagItem('namespace:tag_name')
adds a tag to the block's item, if it has one

tagBoth('namespace:tag_name')
adds both block and item tag if possible

hardness(float)

Sets the block's Hardness value. Used for calculating the time it takes for the block
to be destroyed.

resistance(float)
Set's the block's resistance to things like explosions

unbreakable()
Shortcut to set the resistance to MAX_VALUE and hardness to -1 (like bedrock)

lightLevel(number)
Sets the block's light level.
Passing an integer (0-15) will set the block's light level to that value.
Passing a float (0.0-1.0) will multiply that number by 15, then set the block's light
level to the nearest integer

opaque(boolean)
Sets whether the block is opaque. Full, opaque blocks will not let light through.

fullBlock(boolean)
Sets whether the block renders as a full block. Full blocks have certain optimizations
applied to them, such as not rendering terrain behind them. If you're using .box() to
make a custom hitbox, please set this to false .

requiresTool(boolean)
If true , the block will use certain block tags to determine whether it should drop an
item when mined. For example, a block tagged with #minecraft:mineable/axe ,
#minecraft:mineable/pickaxe , and #minecraft:needs_iron_tool would drop nothing unless it
was mined with an axe or pickaxe that was at least iron level.

renderType('solid'|'cutout'|'translucent')
Sets the render type.

cutout is required for blocks with texture like glass, where pixels are either
transparent or not
translucent is required for blocks like stained glass, where pixels can be
semitransparent
otherwise, use solid if all pixels in your block are opaque.

color(tintindex, color)
Recolors a block to a certain color

textureAll('texturepath')
Textures all 6 sides of the block to the same texture.
The path must look like kubejs:block/texture_name (which would be included under
kubejs/assets/kubejs/textures/block/texture_name.png).
Defaults to kubejs:block/<block_name>

texture('side', 'texturepath')
Texture one side by itself. Valid sides are up , down , north , south , east , and west .

model('modelpath')
Specify a custom model.
The path must look like kubejs:block/texture_name (which would be included under
kubejs/assets/kubejs/models/block/texture_name.png).
 Defaults to kubejs:block/<block_name> .

noItem()
Removes the associated item. Minecraft does this by default for a few blocks, like
nether portal blocks. Use this if the player should never be able to hold or place the
block.

box(x0, y0, z0, x1, y1, z1, boolean)
box(x0, y0, z0, x1, y1, z1) // defaults to true

Sets a custom hitbox for the block, affecting collision. You can use this multiple
times to define a complex shape composed of multiple boxes.
Each box is a rectangular prism with corners at (x0,y0,z0) and (x1,y1,z1)
You will probably want to set up a custom block model that matches the shape you
define here.
The final boolean determines the coordinate scale of the box. Passing in true will
use the numbers 0-16, while passing in false will use coordinates ranging from 0.0 to
1.0

noCollision()
Removes the default full-block hitbox, allowing you to fall through the block.

notSolid()
Tells the renderer that the block isn't solid.

waterlogged()
Allows the block to be waterloggable.

noDrops()
The block will not drop itself, even if mined with silk touch.

slipperiness(float)
Sets the slipperiness of the block. Affects how much entities slide while moving on it.
Almost every block in Vanilla has a slipperiness value of 0.6, except slime (0.8) and
ice (0.98).

speedFactor(float)
A modifier affecting how quickly players walk on the block.

jumpFactor(float)
A modifier affecting how high players can jump off the block.

randomTick(consumer<randomTickEvent>)
A function to run when the block recieves a random tick.

item(consumer<itemBuilder>)
Modify certain properties of the block's item (see link)

setLootTableJson(json)
Pass in a custom loot table JSON directly

setBlockstateJson(json)
Pass in a custom blockstate JSON directly

setModelJson(json)
Pass in a custom model JSON directly

noValidSpawns(boolean)
If true , the block is not counted as a valid spawnpoint for entities

suffocating(boolean)
Whether the block will suffocate entities that have their head inside it

viewBlocking(boolean)
Whether the block counts as blocking a player's view.

redstoneConductor(boolean)
Sets whether the block will conduct redstone. True by default.

transparent(boolean)
Sets whether the block is transparent or not

https://wiki.latvian.dev/books/kubejs/page/custom-items

defaultCutout()
batches a bunch of methods to make blocks such as glass

defaultTranslucent()
similar to defaultCutout() but using translucent layer instead

Block Modification

BlockEvents.modification event is a startup script event that allows you to change properties of
existing blocks.

All available properties:

String material
boolean hasCollision
float destroySpeed
float explosionResistance
boolean randomlyTicking
String soundType
float friction
float speedFactor
float jumpFactor
int lightEmission
boolean requiresTool

The block modification event is a startup event.

BlockEvents.modification(e => {
 e.modify('minecraft:stone', block => {
 block.destroySpeed = 0.1
 block.hasCollision = false
 })
})

Custom Tiers

You can make custom tiers for armor and tools in a startup script. They are not reloadable without
restarting the game. The events are not cancellable.

Tool tiers

Armor tiers

The custom tier event is a startup event.

ItemEvents.toolTierRegistry(event => {
 event.add('tier_id', tier => {
 tier.uses = 250
 tier.speed = 6.0
 tier.attackDamageBonus = 2.0
 tier.level = 2
 tier.enchantmentValue = 14
 tier.repairIngredient = '#forge:ingots/iron'
 })
})

ItemEvents.armorTierRegistry(event => {
 event.add('tier_id', tier => {
 tier.durabilityMultiplier = 15 // Each slot will be multiplied with [13, 15, 16, 11]
 tier.slotProtections = [2, 5, 6, 2] // Slot indicies are [FEET, LEGS, BODY, HEAD]
 tier.enchantmentValue = 9
 tier.equipSound = 'minecraft:item.armor.equip_iron'
 tier.repairIngredient = '#forge:ingots/iron'
 tier.toughness = 0.0 // diamond has 2.0, netherite 3.0
 tier.knockbackResistance = 0.0
 })
})

Worldgen
General Notes
Biome Filters:
Biome filters work similarly to recipe filters and can be used to create complex and exact filters to
fine-tune where your features may and may not spawn in the world. They are used for the biomes
field of a feature and may look something like this:

Rule Tests and Targets:
In 1.18, Minecraft WorldGen has changed to a "target-based" replacement system, meaning you
can specify specific blocks to be replaced with specific other blocks within the same feature

WorldgenEvents.add(event => {
 event.addOre(ore => {
 // let's look at all of the 'simple' filters first
 ore.biomes = 'minecraft:plains' 		// only spawn in exactly this biome
 ore.biomes = /^minecraft:.*/			// spawn in all biomes that match the given pattern
 ore.biomes = '#minecraft:is_forest' 	// spawn in all biomes tagged as 'minecraft:is_forest'

 // filters can be arbitrarily combined using AND, OR and NOT logic
 ore.biomes = {}							// empty AND filter, always true
 ore.biomes = []							// empty OR filter, always true
 ore.biomes = { not: 'minecraft:ocean' }	// spawn in all biomes that are NOT 'minecraft:ocean'

 // since AND filters are expressed as maps and expect string keys,
 // all of the 'primitive' filters can also be expressed as such
 ore.biomes = {					// see above for an explanation of these filters
 id: 'minecraft:plains',
 id: /^minecraft:.*/,			// regex (also technically an ID filter)
 tag: 'minecraft:is_forest',
 }
 // note all of the above syntax may be mixed and matched individually
 })
})

configuration. (For example, this is used to replace Stone with the normal ore and Deepslate with
the Deepslate ore variant).

Each target gets a "rule test" as input (something that checks if a given block state should be
replaced or not) and produces a specific output block state. While scripting, both of these concepts
are expressed as the same class: BlockStatePredicate .

Syntax-wise, BlockStatePredicate is pretty similar to biome filters as they too can be combined using
AND or OR filters (which is why we will not be repeating that step here), and can be used to match
one of three different things fundamentally:

1. Blocks: these are simply parsed as strings, so for example 'minecraft:stone' to match
Stone

2. Block States: these are parsed as the block ID followed by an array of properties. You
would use something like 'minecraft:furnace[lit=true]' to match only Furnace blocks that are
lit. You can use F3 to figure out a block's properties, as well as possible values through
using the debug stick.

3. Block Tags: these are parsed in the "familiar" tag syntax, so you could use
'#minecraft:base_stone_overworld' to match all types of stone that can be found generating in
the ground in the Overworld.

More examples of how targets work can be found in the example script down below.

Height Providers:
Another system that may appear a bit confusing at first is the system of "height providers", which
are used to determine at what Y level a given ore should spawn and with what frequency. Used in
tandem with this feature are the so-called "vertical anchors", which may be used to get the height
of something relative to a specific anchor point (for example the top or bottom of the world).

In KubeJS, this system has been simplified a bit to make it easier to use for script developers. There
are two common types of ore placement:

Note that these are block tags, not item tags. They may (and probably will) be different!
(F3 is your friend!)

You can also use regular expressions with block filters, so /^mekanism:.+_ore$/ would match
any block from Mekanism whose ID ends with _ore . Keep in mind this will not match block
state properties!

When a RuleTest is required instead of a BlockStatePredicate , you can also supply that rule
test directly in the form of a JavaScript object (it will then be parsed the same as vanilla
would parse JSON or NBT objects). This can be useful if you want rule tests that have a
random chance to match.

1. Uniform: has the same chance to spawn anywhere in between the two anchors
2. Triangle: is more likely to spawn in the center of the two anchors than it is to spawn

further outwards

 To use these two, you can use the methods uniformHeight and traingleHeight in AddOreProperties ,
respectively. Vertical anchors have also been simplified, as you can use the aboveBottom / belowTop
helper methods in AddOreProperties .

Once again, see the example script for more information!

Example script
WorldgenEvents.add(event => {
 // use the anchors helper from the event
 const { anchors } = event

 event.addOre(ore => {
 ore.id = 'kubejs:glowstone_test_lmao' // (optional, but recommended) custom id for the feature
 ore.biomes = {
 not: 'minecraft:savanna' // biome filter, see above (technically also optional)
 }

 // examples on how to use targets
 ore.addTarget('#minecraft:stone_ore_replaceables', 'minecraft:glowstone') // replace anything in the vanilla
stone_ore_replaceables tag with Glowstone
 ore.addTarget('minecraft:deepslate', 'minecraft:nether_wart_block') // replace Deepslate with Nether Wart
Blocks
 ore.addTarget([
 'minecraft:gravel', // replace gravel...
 /minecraft:(.*)_dirt/ // or any kind of dirt (including coarse, rooted, etc.)...
], 'minecraft:tnt') // with TNT (trust me, it'll be funny)

 ore.count([15, 50]) // generate between 15 and 50 veins (chosen at random), you could use a single
number here for a fixed amount of blocks
 .squared() // randomly spreads the ores out across the chunk, instead of generating them in a
column
 .triangleHeight(// generate the ore with a triangular distribution, this means it will be more likely to be
placed closer to the center of the anchors
 anchors.aboveBottom(32), // the lower bound should be 32 blocks above the bottom of the world, so in
this case, Y = -32 since minY = -64

 anchors.absolute(96)	 // the upper bound, meanwhile is set to be just exactly at Y = 96
)								 // in total, the ore can be found between Y levels -32 and 96, and will be most likely at Y = (96 + -
32) / 2 = 32

 // more, optional parameters (default values are shown here)
 ore.size = 9 // max. vein size
 ore.noSurface = 0.5 // chance to discard if the ore would be exposed to air
 ore.worldgenLayer = 'underground_ores' // what generation step the ores should be generated in (see below)
 ore.chance = 0							 // if != 0 and count is unset, the ore has a 1/n chance to generate per chunk
 })

 // oh yeah, and did I mention lakes exist, too?
 // (for now at least, Vanilla is likely to remove them in the future)
 event.addLake(lake => {
 lake.id = 'kubejs:funny_lake' // BlockStatePredicate
 lake.chance = 4
 lake.fluid = 'minecraft:lava'
 lake.barrier = 'minecraft:diamond_block'
 })
})

WorldgenEvents.remove(event => {
 // print all features for a given biome filter
 event.printFeatures('', 'minecraft:plains')

 event.removeOres(props => {
 // much like ADDING ores, this supports filtering by worldgen layer...
 props.worldgenLayer = 'underground_ores'
 // ...and by biome
 props.biomes = [
 { category: 'icy' },
 { category: 'savanna' },
 { category: 'mesa' }
]

 // BlockStatePredicate to remove iron and copper ores from the given biomes
 // Note tags may NOT be used here, unfortunately...
 props.blocks = ['minecraft:iron_ore', 'minecraft:copper_ore']
 })

 // remove features by their id (first argument is a generation step)

Generation Steps
1. raw_generation
2. lakes
3. local_modifications
4. underground_structures
5. surface_structures
6. strongholds
7. underground_ores
8. underground_decoration
9. fluid_springs

10. vegetal_decoration
11. top_layer_modification

It's possible you may not be able to generate some things in their layer, like ores in Dirt,
because Dirt hasn't spawned yet. You may have to change the layer to one of the above
generation steps by calling ore.worldgenLayer = 'top_layer_modification' . However, this is not
recommended.

Nether ores are generated in underground_decoration step!

 event.removeFeatureById('underground_ores', ['minecraft:ore_coal_upper', 'minecraft:ore_coal_lower'])
})

