
KubeJS Create
Create integration for KubeJS. This mod allows you to add and properly edit recipes of Create mod
in KubeJS scripts. All supported recipe types and examples are below. See Recipes page for more
info.

Simple Recipe Types
createCrushing
createCutting
createMilling
createBasin
createMixing

supports .heated() and .superheated()
createCompacting

supports .heated() and .superheated()
Can have any number of inputs
Used basin

createPressing
Only has one item input
Used on any surface

createSandpaperPolishing
createSplashing

AKA Bulk Washing
createDeploying
createFilling
createEmptying
createHaunting

Bulk Smoking is vanilla smoking.
Bulk Blasting is vanilla smelting (as long as there is not a smoking recipe) or vanilla
blasting.

Syntax

Bulk Smoking and Bulk Blasting recipes are auto generated from vanilla smelting, smoking,
and blasting recipes.

https://www.curseforge.com/minecraft/mc-mods/create
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs

event.recipes.create.mixing(output[], input[])
or
event.recipes.createMixing(output[], input[])

Output can be an item, fluid, or an array of multiple.

Input can be an ingredient, fluid, or an array of multiple.

Examples

Mechanical Crafter
Syntax
event.recipes.create.mechanicalCrafting(output, pattern[], {patternKey: input})
or
event.recipes.createMechanicalCrafting(output, pattern[], {patternKey: input})

onEvent('recipes', event => {
	event.recipes.createCrushing([
		'2x bone_meal',
		Item.of('5x bone_meal').withChance(0.5)
], 'bone_block')

	event.recipes.create.mixing(Fluid.of('create:builders_tea',500),[
		Fluid.of('milk',250),
 	 	Fluid.of('water',250),
		'#leaves'
]).heated()

	event.recipes.createFilling('create:blaze_cake', [
		'create:blaze_cake_base',
		Fluid.of('minecraft:lava', 250)
])

	event.recipes.createEmptying([
		'minecraft:glass_bottle',
		Fluid.of('create:honey', 250)
], 'minecraft:honey_bottle')
})

This recipe type is the same as regular crafting table shaped recipe, however the pattern can be up
to 9x9, instead of 3x3.

Examples

Sequenced Assembly
Syntax
event.recipes.create.sequencedAssembly(output[], input,
sequence[]).transitionalItem(transitionalItem).loops(loops)
or
event.recipes.createSequencedAssembly(output[], input,
sequence[]).transitionalItem(transitionalItem).loops(loops)

Output is an item or an array of items.

If it is an array:

The first item is the real output, the remainder are scrap.
Only one item is chosen, with equal chance of each.
You can use Item.of('create:shaft').withChance(2) to double the chance of that specific item to
being chosen.

Input is an ingredient.

Transitional Item is any item* and is used during the intermediate stages of the assembly.

Sequence is an array of recipes.

onEvent('recipes', event => {
	event.recipes.createMechanicalCrafting('minecraft:piston', [
		'CCCCC',
		'CPIPC',
		'CPRPC'
], {
		C: '#forge:cobblestone',
		P: '#minecraft:planks',
		R: '#forge:dusts/redstone',
		I: '#forge:ingots/iron'
	})
})

The only legal recipes are:
createCutting
createPressing
createDeploying
createFilling

The transitional item needs to be the output of each of these recipes.
The transitional item needs to be the an input of each of these recipes.

Loops is the number of time that the recipes repeats. Calling .loops() is optional, and defaults to 4.

Examples

onEvent('recipes', event => {
	event.recipes.createSequencedAssembly([// start the recipe
		Item.of('create:precision_mechanism').withChance(130.0), // this is the item that will appear in JEI as the result
		Item.of('create:golden_sheet').withChance(8.0), // the rest of these items will part of the scrap
		Item.of('create:andesite_alloy').withChance(8.0),
		Item.of('create:cogwheel').withChance(5.0),
		Item.of('create:shaft').withChance(2.0),
		Item.of('create:crushed_gold_ore').withChance(2.0),
		Item.of('2x gold_nugget').withChance(2.0),
		'iron_ingot',
		'clock'
],'create:golden_sheet',[// 'create:golden_sheet' is the input
		// the transitional item set by "transitionalItem('create:incomplete_large_cogwheel')" is the item used during the
intermediate stages of the assembly
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:cogwheel']),
 	 	// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:large_cogwheel']),
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:iron_nugget'])
]).transitionalItem('create:incomplete_precision_mechanism').loops(5) // set the transitional item and the loops
(amount of repetitions)

	// for this code to work, kubejs:incomplete_spore_blossom need to be added to the game
	let inter = 'kubejs:incomplete_spore_blossom' // making a varrible to store the transition item makes the code
more readable

Transitional Items
As mentioned earlier, any item can be a transition item. However, this is not completely
recommended.

If you wish to make your own transitional item, its best if you make the type
create:sequenced_assembly .

1.16 syntax

1.18 syntax

	event.recipes.createSequencedAssembly([
			Item.of('spore_blossom').withChance(16.0), // this is the item that will appear in JEI as the result
			Item.of('flowering_azalea_leaves').withChance(16.0), // the rest of these items will part of the scrap
			Item.of('azalea_leaves').withChance(2.0),
			'oak_leaves',
			'spruce_leaves',
			'birch_leaves',
			'jungle_leaves',
			'acacia_leaves',
			'dark_oak_leaves'
],'flowering_azalea_leaves', [// 'flowering_azalea_leaves' is the input
			// the transitional item is a varrible, that is "kubejs:incomplete_spore_blossom", and is used during the
intermediate stages of the assembly
			event.recipes.createPressing(inter, inter),
			// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
			event.recipes.createDeploying(inter, [inter, 'minecraft:hanging_roots']),
			event.recipes.createFilling(inter, [inter, Fluid.of('minecraft:water',420)]),
			event.recipes.createDeploying(inter, [inter, 'minecraft:moss_carpet']),
 			event.recipes.createCutting(inter, inter)
]).transitionalItem(inter).loops(2) // set the transitional item and the loops (amount of repetitions)
})

onEvent('item.registry', event => {
	event.create('incomplete_spore_blossom').displayName('Incomplete Spore
Blossom').type('create:sequenced_assembly')
})

Mysterious Conversion

Example
Goes inside of client scripts and not in an event.

Preventing Recipe Auto-Generation
If you don't want a smelting, blasting, smoking, crafting, or stone-cutting to get an auto-generated
counter part, then include manual_only at the end of the recipe id.

Example

Other types of prevention, can be done in the create config (the goggles button leads you there).

If it is not in the config, then you can not change it.

onEvent('item.registry', event => {
	event.create('incomplete_spore_blossom','create:sequenced_assembly')
})

Mysterious Conversion recipes are client side only, so the only way to add them currently is
using reflection.

//makes the varribles used
let MysteriousItemConversionCategory =
java('com.simibubi.create.compat.jei.category.MysteriousItemConversionCategory')
let ConversionRecipe = java('com.simibubi.create.compat.jei.ConversionRecipe')

//adds in the recipes
MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('minecraft:apple', 'minecraft:carrot'))

MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('minecraft:golden_apple',
'minecraft:golden_carrot'))

onEvent('recipes', event => {
	event.shapeless('wet_sponge',['water_bucket','sponge']).id('kubejs:moisting_the_sponge_manual_only')
})

Revision #10
Created 29 September 2022 23:51:55 by Q6
Updated 10 July 2023 16:19:23 by Lexxie

