
Components, KubeJS and
you!
In 1.18.2 and beyond KubeJS uses Components in a lot of places. It returns them for entity names,
item names and accepts them for everything from tooltips to sending messages to players.

Making your own Components starts from the ComponentWrapper class, invokable with just
Component or Text from anywhere. The examples all use Component but Text works just the same.

ComponentWrapper methods:
Name Return Type Info

of(Object o) MutableComponent Returns a component based on what
was input. Accepts strings, primitives
like numbers, snbt/nbt format of
Components and a couple others.

clickEventOf(Object o) ClickEvent Returns a ClickEvent based on what
was input. See examples below

prettyPrintNbt(Tag tag) Component Returns a component with a prettified
version of the input NBT.

join(MutableComponent seperator,
Iterable<? extends Component>
texts)

MutableComponent Returns the result of looping through
texts and joining them, separating

each one with seperator .

string(String text) MutableComponent Returns a basic unformatted
TextComponent with just the input
text

translate(String key) MutableComponent Returns a basic unformatted
TranslatableComponent with the input
key.

translate(String key, Object... objects) MutableComponent Returns an unformatted
TranslatableComponent with objects
as the replacements for %s in the
translation output.

All examples use event.player.tell from the player.chat event to output their example, but they
will with anywhere that accepts a Component!

Name Return Type Info

keybind(String keybind) MutableComponent Returns a basic unformatted
KeybindComponent with the specified
keybind.

<color>(Object text) MutableComponent Returns a basic Component with the
specified color for text coloring. Valid
colors are in the list below. Do not
include the <> brackets.

A list of colors accepted in various places:

black
darkBlue
darkGreen
darkAqua
darkRed
darkPurple
gold
gray
darkGray
blue
green
aqua
red
lightPurple
yellow
white

Basic examples:

onEvent('player.chat', event => {
 // Tell the player a normal message
 event.player.tell(Component.string('Hello world'))
 // Now in black
 event.player.tell(Component.black('Welcome to the dark side, we have cookies!'))
 // Tell them the diamond item, in whatever language they have set
 event.player.tell(Component.translate('item.minecraft.diamond'))
 // Now tell them whatever key they have crouching set to
 event.player.tell(Component.keybind('key.sneak'))
 // And finally show them the nbt data of the item they are holding
 event.player.tell(Component.prettyPrintNbt(event.player.mainHandItem.nbt))
})

MutableComponent
These are methods you can call on any MutableComponent. This includes ComponentKJS, which is
a KubeJS extension for vanilla's components and is injected into vanillas code on runtime. All
methods from ComponentKJS are included, but only relevant ones from vanilla are included.

Name Return Type Info

iterator() Iterator<Component> Returns an Iterator for the
components contained in this
component, useful for when multiple
have been joined or appended. From
ComponentKJS.

self() MutableComponent Returns the component you ran it on.
From ComponentKJS.

toJson() JsonElement Returns the Json representation of this
Component. From ComponentKJS.

<color>() MutableComponent Modifies the Component with the
specified color applied as formatting,
and returns itself. Do not include the
<> brackets. From ComponentKJS.

color(Color c) MutableComponent Modifies the Component to have the
input Color, and returns itself. (Color
is a Rhino color). From ComponentKJS.

noColor() MutableComponent Modifies the Component to have no
color, and returns itself. From
ComponentKJS.

bold()
italic()
underlined()
strikethrough()
obfuscated()

MutableComponent Modifies the Component to have said
formatting and returns itself. From
ComponentKJS.

bold(@Nullable Boolean value)
italic(@Nullable Boolean value)
underlined(@Nullable Boolean value)
strikethrough(@Nullable Boolean
value)
obfuscated(@Nullable Boolean value)

MutableComponent Modifies the Component to have said
formatting and returns itself. From
ComponentKJS.

Name Return Type Info

insertion(@Nullable String s) MutableComponent Makes the Component insert the
specified string into the players chat
box when shift clicked (does not send
it) and returns itself. From
ComponentKJS.

font(@Nullable ResourceLocation s) MutableComponent Changes the Components font to the
specified font and returns itself. For
more information on adding fonts see
the Minecraft Wiki's Resource packs
page. From ComponentKJS.

click(@Nullable ClickEvent s) MutableComponent Sets this components ClickEvent to
the specified ClickEvent. From
ComponentKJS.

hover(@Nullable Component s) MutableComponent Sets the hover tooltip for this
Component to the input Component.
From ComponentKJS.

setStyle(Style style) MutableComponent Sets the style to the input Style
(net.minecraft.network.chat.Style)
and returns itself. Not recommended
for use, use the specific methods
added by CompontentKJS instead.

append(String string) MutableComponent Appends the input string as a basic
TextComponent to this Component
then returns itself.

append(Component component) MutableComponent Appends the input Component to this
Component then returns itself.

withStyle(Style style) MutableComponent Merges the input style with the
current style, preffering properties
from the new style if a conflict exists.

getStyle() Style Returns this Components current
Style.

getContents() MutableComponent Returns this Components contents.
Will return the text for
TextComponents, the pattern for
SelectorComponents and an empty
string for all other Components.

getSiblings() List<Component> Returns a list of all Components which
have been append()ed to this
Component

plainCopy() BaseComponent Returns a basic copy of this,
preserving only the contents and not
the style or siblings.

copy() MutableComponent Returns a full copy of this Component,
preserving style and siblings

https://minecraft.fandom.com/wiki/Resource_Pack#Fonts
https://minecraft.fandom.com/wiki/Resource_Pack#Fonts

Name Return Type Info

getString() String Returns this components text as a
String. Will return a blank string for
any non-text component

More complex examples:

// First a prefix, like a rank. This won't be changing so we can just declare it up here.
const prefix = Component.darkRed('[Admin]').underlined()

onEvent('player.chat', event => {

 // First cancel the event because we are going to be sending the message ourselves
 event.cancel()

 // The main Component we will be adding stuff to. It is just a copy of the prefix component for now
 let component = prefix.copy() // If we didn't copy it all the modifications we made to it would be applied to the
original as well!

 // Make a component of the players name and then surround with < > and make it white again. Then append it
our main copmponent.
 // A component will inherit any styiling it doesnt have from whatever it has been .append()ed to, so you need to
apply formatting	rather liberally some times!
 let playerName = Component.string(event.getUsername())
 // Doing it this way means we only have to apply the white formatting and no underline once to the name
 let nameComponent = Component.white(' <').underlined(false).append(playerName).append('> ')
 component.append(nameComponent)

 // Finnally add the message (obfuscated, of course) and send it!
 // We make sure to set its color and underline though, otherwise it will end up inheriting the red and underline
from the prefix!
 component.append(Component.string(event.message).obfuscated().white().underlined(false))
 event.server.tell(component)

})	

Revision #3
Created 23 June 2022 06:20:24 by ChiefArug

Updated 15 November 2022 17:22:14 by Lexxie

