
By now you have created a custom recipe, or maybe multiple, or even manipulated tags, or
created custom items or blocks.

But you want to do more then that, you want to add a custom mechanic, for example milking a
goat.

The first step is to break down your idea into smaller pieces, until each piece is something you can
code.
One thing to note, is that most all things are caused by some trigger. Such as an entity dieing, or a
block being placed. These are detected by events.

This is just like when we made recipes, but that time the event was triggered not by a players
action, but by the game doing internal operations, that being getting to the time that is for
registering recipes.

As a refresher, here is detecting the recipes event:

To change the event detected, we need to change what is in the ' s. But to what? Luckily there is a
list of all event page in this wiki!

Searching the ID column, we can scroll down and find that there is an event named
item.entity_interact which happens to be the one that we want for milking the goat.

Now we just put that in there, and we can now run code when a player right clicks an entity.

Basics Custom Mechanics

Detecting Events

onEvent('recipes', event => {

	//recipes

})

Look at the type column and it will tell you which folder, you will need to put you code into.

onEvent('item.entity_interact', event => {

	//code

})

https://mods.latvian.dev/books/kubejs-legacy/page/your-first-script
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/custom-items
https://mods.latvian.dev/books/kubejs-legacy/page/custom-blocks
https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events

To test we can use Utils.server.tell() to detect when the event occurs.

But this occurs to it entities, and want to only affect what happens to goats.
To do this, we need to know information about the context of the event.

Up to this point you may have been wondering what the purpose of the event => { is.

You can recall that for the custom recipe, used it to call the method that added the recipe.

For each event that we detect the variable event will have different methods. The
item.entity_interact event has methods:

.getEntity()

.getHand()

.getItem()

.getTarget()

So in our code we can write:

The are many situations that console.log() , would be better, which put the result in to
instance/logs/kubejs/server.txt .

onEvent('item.entity_interact', event => {

	Utils.server.tell("Entity Interation Detected!")

})

Now to test you can try right clicking an entity and see you will see a message appears in the
chat.

Calling Methods of an Event

onEvent('recipes', event => {

	event.shapeless('flint', ['gravel', 'gravel', 'gravel'])

}

How are you supposed to know this? Using ProbeJS! There is a whole wiki page about this
addon!

onEvent('item.entity_interation', event => {

	event.getTarget()

})

https://mods.latvian.dev/books/kubejs-legacy/page/using-probejs

What does this do?
Nothing!
Why?
Because the .getEntity() method does not do anything, but it returns the entity.

To see this we can put it into the chat.

Because of this, you might think what we need to do is run event.getEntity().toString() to get the
entity type.

But this is wrong. You should not be using .toString() as there is almost always a better way. In
this case its using the method .getType() of entity that returns a string of the type of the entity.

This code is good, but it can be better because of a feature called BEANS.

This feature is very simple:

Methods that start with get and take no parameters, can be shorted from foo.getBar() to
foo.bar

Methods that start with set and take one parameter, can be shorted from
foo.setBar("cactus") to foo.bar = "cactus"

So in our case the code can be shortened to:

.getEntity() gets the player, while .getTarget() gets the entity

onEvent('item.entity_interation', event => {

	Utils.server.tell(event.getTarget())

})

Now when you interact with an entity you can see what some details about it!

What is put in the chat is not the actual value is, as only Strings can be displayed. All other
types (such as EntityJS) have a toString() method that is called which extracts some
information and returns a string that is then displayed instead.

onEvent('item.entity_interation', event => {

	Utils.server.tell(event.getTarget().getType())

})

onEvent('item.entity_interation', event => {

	Utils.server.tell(event.target.type)

Alright, this is all good, but we want to make the code do stuff, not just tell tell us about the entities
type. Notably we want to run code if an the type is a certain value.

We do this by using a control structure called: if!

The basic syntax is as following:
if (condition) {result}

The condition is a boolean, which holds a value: true or false.
And if the boolean equates to true, then the code in result runs, otherwise it does not.

Here is an example:

Lets make this useful, we need to use a condition to run the code based on the entity type.

Testing equality:

So our code can look like:

})

If Statements

onEvent('item.entity_interact', event => {

 	Utils.server.tell(event.target.type)

 	if (true) {

 	Utils.server.tell("True")

 }

 if (false) {

 	Utils.server.tell("False")

 }

})

When you interact with an entity in the chat you will be told the True, but not the False.

//GOOD

"foo" == "foobar" // this is false

"foo" == "foo" // this is true

//BAD

"foo" = "foobar" // a single '=' does assignment (we will get to this later) NOT equality

Now any code that we want to run when a goat is interacted with, we will place inside of this if
statement.

This works, but it can be better.

Something that as you write more code will become increasingly important is code readability. In
this case it can be improved with what is know as guard statements. In this case it will look like:

This might look more confusing at first but is really quite simple.

Firstly, I am using != instead of == , which is the same as, except it returns the opposite, so true
if they are unequal, and false if they do equal.

Secondly, id you do not include {} then the if will only apply to the next line immediately after,
and everything after is considered to be out of the if.

Thirdly, return in this context will end the execution of the code.
So if the entity type is not a goat, then execution will not get passed line 2.

The next step is to take a bucket, but before we can do that, we need to ensure the player is
holding a bucket.

onEvent('item.entity_interact', event => {

 	if (event.target.type == "minecraft:goat") {

 	Utils.server.tell("Is a Goat")

 }

})

Now interacting with a goat will provide the message Is a Goat when interacting with a
goat!

Guard Statements

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat") return

 Utils.server.tell("Is a Goat")

})

Learn more about ifs here.

Getting the item in the players hand

https://www.w3schools.com/js/js_if_else.asp

 We can use the method .getItem() so event.getItem() which can be beaned to event.item .

Now we get the type of item we can use .getId() so event.item.getId() so event.item.id .

We could use another if, but I want to show you a different option, the OR boolean operator:

so we can put this in or code to be:

Now to take the item, we will manipulate the count of it. We can get the count of the item, subtract
one from it, then set the count to the result.

.getCount()

get the count of an item
.setCount()

sets the count of an item

We can write the code:

Now we bean it to:

true || true // is true

true || false // is true

false || true // is true

false || false // is false

false || false || true || false // is true

false || false || false || false // is false

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

})

This should say in the chat Is a Goat and is Holding a Bucket if you right click a goat with a
bucket

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.setCount(event.item.getCount() - 1)

})

But there is a better way to write this using something know as syntactical sugar. This is just a
fancy term for using symbols in a special order that lets you write a piece of code with less total
characters to do a different thing with under the hood.

In the example above we used the basic assignment operator = .
But there are other assignment operators! Such as the subtraction assignment operator -= .

Here is it in the code:

Instead of getting the value, then subtracting one, it can now be thought of as simply reducing the
value by 1.

But wait, there's more! For adding or subtracting by 1, you can make the code even smaller,
appending ++ or -- to then end.

Epic, we made it smaller! None of that was required, but it looks a lot nicer.

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count = event.item.count - 1

})

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count -= 1

})

There are other assignment operators, such as one for addition, += , multiplication, *= ,
division, /= , modulo, %= , logical or ||= , logical and, &&== , bitwise xor, ^= , bitwise and, &= ,
bitwise or, |= , left bitshift, <<= , right bitshift, >>>= , signed right bitshift >>= , and of course
minus, -=

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--

})

We can go quick cause we know all the steps for all that is left.

event.getPlayer() for player but event.player because of beans. Player has a method called
.give(ItemStack) to give an item so event.player.give(ItemStack) . And in our case ItemStackJS is
'milk_bucket' . So our final code:

Now we can remove the debugging line Utils.server.tell("Is a Goat and is Holding a Bucket") .

It seem good. Right? All done. Wrong!

When programming, you always have to be careful about edge-cases. These are situations that
are typically at extremes on situations. For example you write some code to function differently if
you have 5 or more levels, but when you have 5 levels exactly, some logic differently causing an
expected result.

Our code currently mishandles an edge case. The edge case is when the player has one bucket in
their hand.

Giving the Player Items

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--

 	event.player.give('milk_bucket')

})

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 	event.item.count--

 	event.player.give('milk_bucket')

})

When holding a stack of buckets and right clicking a goat, a bucket will be consumed and
you gain a milk bucket.

When holding one bucket in your hand, not in the first slot, and with nothing else in the first
slot. When right-clicking a goat the milk bucket does not stay in your hand as is intuitive, but
instead get placed in the first slot.

To resolve this bug, we could add an if to check if the count is one, then change the logic, but this
is not required because their is method that does everything for us. The method .giveInHand() is
identical to the .give() except it first attempts to put the item in the players hand if it is empty.

Putting this in our code looks like:

Now it seems like we are done! But compare with milking a cow, its just not as satisfying.

Although adding feedback in to you creations, usually in the form of sound effects, and particles,
does not change the effect or your creation, it has a major effect on how engaging, polished, and
interesting your creation appears.

Luckily playing sound is really easy with KubeJS, because many different classes have a
.playSound() method.
We want the sound to originate from the goat being milked so we can use event.target to get the
goat, then just call .playSound() .

.playSound() takes some parameters:
Either the id of the sound, or the id, the volume , and the pitch .
Lets keep thing simple by only using the id .

Although you can register new sounds with KubeJS, it would be easier to use the existing cow
milking sound. The id of this sound is entity.cow.milk .

Putting this into the code looks like:

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 	event.item.count--

 	event.player.giveInHand('milk_bucket')

})

Adding Sound

onEvent('item.entity_interact', event => {

 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return

 	event.item.count--

 	event.player.giveInHand('milk_bucket')

 	event.target.playSound('entity.cow.milk')

})

Now when milking a goat, you hear the milking sound.

There we go! We are done!

Now that we implemented a feature together you will be able to make some of your own basic
custom features too!

Don't be too intimidated by how long it took us, we went through every single detail, but you
already know those so it will take you a fraction of the time it took to make this.

Here is a step by step list of how you can make your own mechanic:

1. Determine what triggers the mechanic.
1. This is the event.
2. In this example we did item.entity_interact .
3. A list of all events is here.

2. Narrow down when the code of you event runs with guard statements.
1. Use an if and return.
2. In our case it is detecting the entity as a goat and the item as a bucket.
3. Use ProbeJS or the second wiki or the source code to get the information you need.

3. Break down what you want to do as code you can write.
1. In our case instead of the idea of filling a bucket with milk, the code takes one of the

item and give the player a bucket of milk.
2. Use ProbeJS or the second wiki or the source code to get the information you need.

4. Double check edge cases.
1. You should be always testing you code with most every change you make.
2. You need to be extra careful with edge cases, when making changes too.
3. In our case we replaced player.give() with player.giveInHand() .

5. Add Polish.
1. This includes fixing minor bugs on edge cases.
2. This also involves making sure the player gets feedback such as sound or particles.
3. In our case this is the milking sound.

Although we did not get to it with the example, here are some simple things that would be helpful
to know:

Cancelling events:
Sometimes you want the default action of an event to not occur.
An example is maybe if you wanted to add milking of horses.

There already is an interaction for right clicking horses, getting on them.
The player would both milk and be put on the horse if the event is not
canceled.

The syntax is event.cancel() .

Recap

Other Helpful Things to Know

https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS

You can place it anywhere in your code and the effect will be the same, the
default action will not occur.

Only some events are cancel-able.
The non-cancel-able events are listed in the list of all events.
You can tell if an event is cancel-able with event.isCancelable() .

Some events are partly cancel-able.
They are listed as cancel-able, but don't completely undo the default action.
For example entity.death event, canceling it will not prevent the entity from
dying, but will prevent loot, and statistics.

While loops
They syntax is the same as an if.
The function is the same, except the code inside of the loop will repeat until the
condition becomes false.
Learn more here.

Variables
Using let foo = bar will make a variable named foo and set it to the contents of bar.

To change the value of foo later use foo = bar if foo is already made.
A common use is to reduce repeated code.

So in our example we could have placed let t = event.target at the
beginning.
Then every use of event.target could have been replaced with t so
event.target.type become t.type .

Variables massively increase what is possible, and as begin to reveal a lot more
hidden complexities (such as scope, reference vs value and more) that we not gonna
get into right now.
Learn more here.

Revision #4
Created 7 October 2022 20:01:44 by Q6
Updated 19 February 2024 06:37:08 by Q6

https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_variables.asp

