
KubeJS Legacy
This wiki is for KubeJS 1.18.2 and below. That said, this one still has a lot of useful info!

Intro
Migrating to KubeJS 6
Getting Started

Introduction and Installation
Your First Script
Basics Custom Mechanics
Using ProbeJS

Events

List of all events
Custom Items
EventJS
Custom Blocks
CommandEventJS
TagEventJS
Loot Table Modification
RecipeEventJS
Item Modification
WorldgenAddEventJS (1.16)
Block Modification
JEI Integration
WorldgenRemoveEventJS (1.16)
REI Integration
ItemTooltipEventJS
Worldgen Events
Chat Event

Custom Fluids
Command Registry
Datapack Load Events

Examples

FTB Quests Integration
Reflection / Java access
Painter API
Units
Network Packets
Starting Items
FTB Utilities Rank Promotions
Clearlag 1.12
Scheduled Server Events
Running Commands
Spawning Entities

Classes

Object
String
Primitive Types

Global

Components, KubeJS and you!
Item and Ingredient

Other

Changing Window Title and Icon
Loading Assets and Data
Default Options

Addons

KubeJS UI
KubeJS Thermal
KubeJS Create

3rd Party addons
KJSPKG

Intro
FAQ
What does this mod do?
This mod lets you create scripts in JavaScript language to manage your server, add new blocks and
items, change recipes, add custom handlers for quest mods and more!

How to use it?
Run the game with mod installed once. It should generate kubejs folder in your minecraft directory
with example scripts and README.txt. Read that!

Here's a video tutorial for 1.19.2:

https://www.youtube.com/embed/xhJJbNJjics

I don't know JavaScript
There's examples and pre-made scripts here. And you can always ask in discord support channel
for help with scripts, but be specific.

Can I reload scripts?
Yes, use /reload to reload server_scripts/ , F3 + T to reload client_scripts/ and /kubejs reload
startup_scripts to reload startup_scripts/ . If you don't care about reloading recipes but are testing
some world interaction event, you can run /kubejs reload server_scripts . Note: Not everything is
reloadable. Some things require you to restart game, some only world, some work on fly. Reloading
startup scripts is not recommended, but if you only have event listeners, it shouldn't be a problem.

What mod recipes does it support / is mod X supported?
If the mod uses datapack recipes, then it's supported by default. Some more complicated mods
require addon mods, but in theory, still would work with datapack recipes. See Recipes section for
more info.

What features does this mod have?

https://www.youtube.com/embed/xhJJbNJjics
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs

The feature list would go here if I actually wrote it. But basically, editing and creating recipes, tags,
items, blocks, fluids, worldgen. Listening to chat, block placement, etc. events. Just look at the
event list on Wiki.

How does this mod work?
It uses a fork of Rhino, a JavaScript engine by Mozilla to convert JS code to Java classes at runtime.
KubeJS wraps minecraft classes and adds utilities to simplify that a lot and remove need for
mappings. Architectury lets nearly the same source code be compiled for both Forge and Fabric
making porting extremely easy.

Ok, but what if it.. doesn't work?

You can report issues here.

I have more questions/suggestions!

If wiki didn't have the answer for what you were looking for, you can join the Discord server and
ask for help on #support channel!

Image not found or type unknown

Website: https://kubejs.com/

Source and issue tracker: https://github.com/KubeJS-Mods/KubeJS

Download: https://www.curseforge.com/minecraft/mc-mods/kubejs

Anything below 1.16 is no longer supported!

https://www.curseforge.com/minecraft/mc-mods/architectury-api
https://github.com/KubeJS-Mods/KubeJS/issues
https://discord.gg/lat
https://discord.gg/lat
https://kubejs.com/
https://github.com/KubeJS-Mods/KubeJS
https://www.curseforge.com/minecraft/mc-mods/kubejs

Migrating to KubeJS 6

What's changed in the new KubeJS 6
(1.19.2+)?
onEvent()
onEvent('event', e => {}) syntax was replaced by SomeEventGroup.someEventName(e => {})

Not only that, but new events also support extra parameters for IDs and other things! You can now
choose to make each id have its own event handler:

This page is still being worked on, so if some info is missing, please check back later!

// Before
onEvent('block.right_click', e => {
 if(e.block.id === 'minecraft:dirt') console.info('Hi!')
})

// After
BlockEvents.rightClicked(e => {
 if(e.block.id === 'minecraft:dirt') console.info('Hi!')
})

// Before
onEvent('block.right_click', e => {
 if(e.block.id === 'minecraft:dirt') console.info('Hi!')
 else if(e.block.id === 'minecraft:stone') console.info('Bye!')
})

// After
BlockEvents.rightClicked('minecraft:dirt', e => {
 console.info('Hi!')
})

Some events require ID, such as registry and tag events:

Using parameters is actually faster on the CPU than checking some event.id == 'id'

onForgeEvent()
onForgeEvent('package.ClassName', e => {}) has been replaced by
ForgeEvents.onEvent('package.ClassName', e => {})

New! It now supports generic events:

Server settings

BlockEvents.rightClicked('minecraft:stone', e => {
 console.info('Bye!')
})

// Before
onEvent('item.registry', e => {})

// After
StartupEvents.registry('item', e => {})

// Before
onEvent('tags.items', e => {})

// After
ServerEvents.tags('item', e => {})

You can find the full list of new events here.

// Before
onForgeEvent('net.minecraftforge.event.level.BlockEvent$PortalSpawnEvent', e => {})

// After
ForgeEvents.onEvent('net.minecraftforge.event.level.BlockEvent$PortalSpawnEvent', e => {})

ForgeEvents.onGenericEvent('net.minecraftforge.event.AttachCapabilitiesEvent',
'net.minecraft.world.entity.Entity', e => {})

https://mods.latvian.dev/books/kubejs/page/list-of-events

settings.log... properties have been removed from server scripts, and instead, moved to
local/kubejsdev.properties file. By default, it won't be shipped with the pack, but you can change
saveDevPropertiesInConfig to true to instead save the file in kubejs/config/dev.properties .

java()
java('package.ClassName') has been replaced by Java.loadClass('package.ClassName')

There might be some more reflective helper methods later in the Java util class, such as listing all
fields and methods in a class, etc.

Bye Bye Wrapper classes
None of the vanilla classes are wrappers anymore - EntityJS , LevelJS , ItemStackJS , IngredientJS , and
others are gone. This may introduce some bugs, but in general, should make it significantly easier
to interact with Minecraft and other mods. Almost all old methods are still supported by core-
modding vanilla. This should also significantly boost performance, as it doesn't need to constantly
wrap and unwrap classes.

KubeJS 6.1 Update

Other questions
If you have any other questions, feel free to ask them on my Discord Server.

// Before
const CactusBlock = java('net.minecraft.world.level.block.CactusBlock')

// After
const CactusBlock = Java.loadClass('net.minecraft.world.level.block.CactusBlock')

https://wiki.latvian.dev/books/kubejs/page/kubejs-61-update
https://discord.gg/latviandev

Getting Started
A step by step guide for learning the basics of KubeJS

Getting Started

Introduction and Installation
Installation
Install the mod and its two dependencies Architectury and Rhino.
Make you use the most resent version of each mods for your version.
If you are using 1.16 fabric then use this instead.

When you first install KubeJS, you will need to launch Minecraft with the mods (and the game not
crashing) to generate the some folders and files.

The kubejs folder
Finding it
Everything you do in KubeJS in located in the kubejs folder in your instance.

In PolyMC the file structure will look like polymc > instances > instance name > minecraft >
kubejs
In CurseForge launcher the file structure will look like curseforge > minecraft > instances >
instance name > kubejs
In all of the above cases the instance name is the name of the instance
In the normal Minecraft launcher it will be .minecraft > kubejs , unless you changed the
instance folder.

From now on this will be referenced as the kubejs folder.

The contents of it
startup_scripts

Scripts that get loaded once during game startup
Used for adding items and other things that can only happen while the game is
loading
Can reload code not in an event with /kubejs reload_startup_scripts
To reload all the code you must restart the game

client_scripts
Scripts that get loaded every time client resources reload
Used for:

https://www.curseforge.com/minecraft/mc-mods/kubejs
https://www.curseforge.com/minecraft/mc-mods/architectury-api
https://www.curseforge.com/minecraft/mc-mods/rhino
https://www.curseforge.com/minecraft/mc-mods/kubejs-fabric

JEI events
tooltips
other client side things

Can reload code not in an event with /kubejs reload client_scripts
Can reload all the code in client_scripts with F3+T

server_scripts
Scripts that get loaded every time server resources reload (world load, /reload)
Used for modifying:

recipes
tags
loot tables
handling server events

Can reload code not in an event with /kubejs reload server_scripts
Can be all the code in server_scripts with /reload

exported
Data dumps like texture atlases end up here

config
KubeJS config storage.
This is also the only directory that scripts can access other than world directory

assets
Acts as a resource pack
you can put any client resources in here, like:

textures
Example: assets/kubejs/textures/item/test_item.png

models
lang
etc.

Can be reloaded by pressing F3 + T
Can reload only the lang files (so faster) /kubejs reload lang

Read more about it here.
data

Acts as a datapack
you can put any server resources in here, like:

loot tables
Example: data/kubejs/loot_tables/blocks/test_block.json

functions
etc

Can be reloaded with /reload

Read more about it here.
README.txt

Contains the information here

You can find type-specific logs in logs/kubejs/ directory

https://mods.latvian.dev/books/kubejs-legacy/page/loading-assets-and-data
https://mods.latvian.dev/books/kubejs-legacy/page/loading-assets-and-data

Other Useful Tools
Code is just a language that computers can understand. However, the grammar of the language,
called syntax for code, is very precise. When you code has a syntactical error, the computer does
not know what to do and will probably do something that you do not desire.

With KubeJS we will be writing a lot of code, so it important to avoid these errors. Luckily, there are
tools called code editors, that can help us write code correctly.

We recommend installing Visual Studio Code as it is light-ish and has great built in JS support. Now
when you edit you java script files, it will not only warn you when you make most syntactical errors,
but also help you prevent them in the first place.

https://code.visualstudio.com/

Getting Started

Your First Script
Writing Your First Script
If you have launched the game at least once before you will find
kubejs/server_scripts/example_server_script.js It looks like this:

Lets break it down:

// priority: 0
Makes it so that if you have multiple server scripts, this script gets loaded first
If you have only one server_script, this has no effect

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false

// priority: 0

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false
settings.logErroringRecipes = true

console.info('Hello, World! (You will see this line every time server resources reload)')

onEvent('recipes', event => {
	// Change recipes here
})

onEvent('item.tags', event => {
	// Get the #forge:cobblestone tag collection and add Diamond Ore to it
	// event.get('forge:cobblestone').add('minecraft:diamond_ore')

	// Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
	// event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

settings.logErroringRecipes = true
sets settings for what messages are logged
You can remove all four of these lines if you want and it will only change what is put
into the logs

console.info('Hello, World! (You will see this line every time server resources reload)')
Prints the message in the log
This line is useless other then example and should be removed eventually

onEvent('recipes', event => {
This makes an event listener for the recipes event, and will run the code inside when
and only when the recipes event is triggered
This is triggered when server resources reload

Which happens when the world load or the /reload command is used
// Change recipes here

comment, an code in a line following // will be considered a comment and will not
be run
Used for taking notes as you write the code

})
Indicates the end of the 'recipes' event listener

onEvent('item.tags', event => {
 // Get the #forge:cobblestone tag collection and add Diamond Ore to it
 // event.get('forge:cobblestone').add('minecraft:diamond_ore')
 // Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
 // event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

Same thing as the other one but for the item.tags event
You can find the list of all event here

Finally Writing Code For Real
Lets start off by adding a recipe to craft flint from three gravel.

To do so, insert this code right after the recipes event.

It should look like this:

event.shapeless("flint", ["gravel", "gravel", "gravel"])

// priority: 0

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false
settings.logErroringRecipes = true

https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events

Now lets test it!

Run the command /reload in game, then try crafting three gravel together in any order.

But how does it work?

event
This is a variable that created with the arrow expression in onEvent('recipes', event =>
{ ...

You can have the name be what every you choose, as long as it matches
everywhere

.
The dot operator is used for calling a method of an object
In this case event is the object and shapeless is the method

shapeless(
This is the method that is called by the dot operator on the event
It is taking two arguments, that being an item result and a array input

"
Indicates the start of a string

flint
The contents of the string
You can use create:flour , if it is from a different mod (flint is the same as
minecraft:flint , and both are valid)

"
Signifies the end of the string.
A string is simply a sequence of characters, or letters
You can read more about strings in JS here.

,

console.info('Hello, World! (You will see this line every time server resources reload)')

onEvent('recipes', event => {
	// Change recipes here
	event.shapeless("flint", ["gravel", "gravel", "gravel"])
})

onEvent('item.tags', event => {
	// Get the #forge:cobblestone tag collection and add Diamond Ore to it
	// event.get('forge:cobblestone').add('minecraft:diamond_ore')

	// Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
	// event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

https://www.w3schools.com/js/js_strings.asp

separates different arguments in the method.
[

Signifies the start of the array.
An array holds multiple values or any type, including other arrays.
You can read more about arrays in JS here.

"gravel", "gravel", "gravel"
The contents of the array
Arrays can hold an indefinite number of elements

]
Closing the array

)
Closing the method

There you go! You can make custom shapeless recipes!

If you want to make other types of recipes, learn about it here, and if you have an addon that adds
more recipe types, loot at its mod page, or here.

https://www.w3schools.com/js/js_arrays.asp
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs-legacy/chapter/addons

Getting Started

Basics Custom Mechanics
By now you have created a custom recipe, or maybe multiple, or even manipulated tags, or
created custom items or blocks.

But you want to do more then that, you want to add a custom mechanic, for example milking a
goat.

The first step is to break down your idea into smaller pieces, until each piece is something you can
code.
One thing to note, is that most all things are caused by some trigger. Such as an entity dieing, or a
block being placed. These are detected by events.

Detecting Events
This is just like when we made recipes, but that time the event was triggered not by a players
action, but by the game doing internal operations, that being getting to the time that is for
registering recipes.

As a refresher, here is detecting the recipes event:

To change the event detected, we need to change what is in the ' s. But to what? Luckily there is a
list of all event page in this wiki!

Searching the ID column, we can scroll down and find that there is an event named
item.entity_interact which happens to be the one that we want for milking the goat.

Now we just put that in there, and we can now run code when a player right clicks an entity.

onEvent('recipes', event => {
	//recipes
})

Look at the type column and it will tell you which folder, you will need to put you code into.

onEvent('item.entity_interact', event => {
	//code
})

https://mods.latvian.dev/books/kubejs-legacy/page/your-first-script
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/custom-items
https://mods.latvian.dev/books/kubejs-legacy/page/custom-blocks
https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events

To test we can use Utils.server.tell() to detect when the event occurs.

But this occurs to it entities, and want to only affect what happens to goats.
To do this, we need to know information about the context of the event.

Calling Methods of an Event
Up to this point you may have been wondering what the purpose of the event => { is.

You can recall that for the custom recipe, used it to call the method that added the recipe.

For each event that we detect the variable event will have different methods. The
item.entity_interact event has methods:

.getEntity()

.getHand()

.getItem()

.getTarget()

So in our code we can write:

The are many situations that console.log() , would be better, which put the result in to
instance/logs/kubejs/server.txt .

onEvent('item.entity_interact', event => {
	Utils.server.tell("Entity Interation Detected!")
})

Now to test you can try right clicking an entity and see you will see a message appears in
the chat.

onEvent('recipes', event => {
	event.shapeless('flint', ['gravel', 'gravel', 'gravel'])
}

How are you supposed to know this? Using ProbeJS! There is a whole wiki page about this
addon!

onEvent('item.entity_interation', event => {
	event.getTarget()
})

https://mods.latvian.dev/books/kubejs-legacy/page/using-probejs

What does this do?
Nothing!
Why?
Because the .getEntity() method does not do anything, but it returns the entity.

To see this we can put it into the chat.

Because of this, you might think what we need to do is run event.getEntity().toString() to get the
entity type.

But this is wrong. You should not be using .toString() as there is almost always a better way. In this
case its using the method .getType() of entity that returns a string of the type of the entity.

This code is good, but it can be better because of a feature called BEANS.

This feature is very simple:

Methods that start with get and take no parameters, can be shorted from foo.getBar() to
foo.bar
Methods that start with set and take one parameter, can be shorted from
foo.setBar("cactus") to foo.bar = "cactus"

So in our case the code can be shortened to:

.getEntity() gets the player, while .getTarget() gets the entity

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.getTarget())
})

Now when you interact with an entity you can see what some details about it!

What is put in the chat is not the actual value is, as only Strings can be displayed. All other
types (such as EntityJS) have a toString() method that is called which extracts some
information and returns a string that is then displayed instead.

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.getTarget().getType())
})

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.target.type)

Alright, this is all good, but we want to make the code do stuff, not just tell tell us about the entities
type. Notably we want to run code if an the type is a certain value.

We do this by using a control structure called: if!

If Statements
The basic syntax is as following:
if (condition) {result}
The condition is a boolean, which holds a value: true or false.
And if the boolean equates to true, then the code in result runs, otherwise it does not.

Here is an example:

Lets make this useful, we need to use a condition to run the code based on the entity type.

Testing equality:

So our code can look like:

})

onEvent('item.entity_interact', event => {
 	Utils.server.tell(event.target.type)
 	if (true) {
 	Utils.server.tell("True")
 }
 if (false) {
 	Utils.server.tell("False")
 }
})

When you interact with an entity in the chat you will be told the True, but not the False.

//GOOD
"foo" == "foobar" // this is false
"foo" == "foo" // this is true

//BAD
"foo" = "foobar" // a single '=' does assignment (we will get to this later) NOT equality

Now any code that we want to run when a goat is interacted with, we will place inside of this if
statement.

This works, but it can be better.

Something that as you write more code will become increasingly important is code readability. In
this case it can be improved with what is know as guard statements. In this case it will look like:

Guard Statements

This might look more confusing at first but is really quite simple.

Firstly, I am using != instead of == , which is the same as, except it returns the opposite, so true
if they are unequal, and false if they do equal.

Secondly, id you do not include {} then the if will only apply to the next line immediately after,
and everything after is considered to be out of the if.

Thirdly, return in this context will end the execution of the code.
So if the entity type is not a goat, then execution will not get passed line 2.

The next step is to take a bucket, but before we can do that, we need to ensure the player is
holding a bucket.

Getting the item in the players hand

onEvent('item.entity_interact', event => {
 	if (event.target.type == "minecraft:goat") {
 	Utils.server.tell("Is a Goat")
 }
})

Now interacting with a goat will provide the message Is a Goat when interacting with a
goat!

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat") return
 Utils.server.tell("Is a Goat")
})

Learn more about ifs here.

https://www.w3schools.com/js/js_if_else.asp

 We can use the method .getItem() so event.getItem() which can be beaned to event.item .

Now we get the type of item we can use .getId() so event.item.getId() so event.item.id .

We could use another if, but I want to show you a different option, the OR boolean operator:

so we can put this in or code to be:

Now to take the item, we will manipulate the count of it. We can get the count of the item, subtract
one from it, then set the count to the result.

.getCount()
get the count of an item

.setCount()
sets the count of an item

We can write the code:

Now we bean it to:

true || true // is true
true || false // is true
false || true // is true
false || false // is false

false || false || true || false // is true
false || false || false || false // is false

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")
})

This should say in the chat Is a Goat and is Holding a Bucket if you right click a goat with a
bucket

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.setCount(event.item.getCount() - 1)
})

But there is a better way to write this using something know as syntactical sugar. This is just a
fancy term for using symbols in a special order that lets you write a piece of code with less total
characters to do a different thing with under the hood.

In the example above we used the basic assignment operator = .
But there are other assignment operators! Such as the subtraction assignment operator -= .

Here is it in the code:

Instead of getting the value, then subtracting one, it can now be thought of as simply reducing the
value by 1.

But wait, there's more! For adding or subtracting by 1, you can make the code even smaller,
appending ++ or -- to then end.

Epic, we made it smaller! None of that was required, but it looks a lot nicer.

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count = event.item.count - 1
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count -= 1
})

There are other assignment operators, such as one for addition, += , multiplication, *= ,
division, /= , modulo, %= , logical or ||= , logical and, &&== , bitwise xor, ^= , bitwise and,
&= , bitwise or, |= , left bitshift, <<= , right bitshift, >>>= , signed right bitshift >>= , and
of course minus, -=

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--
})

Giving the Player Items
We can go quick cause we know all the steps for all that is left.

event.getPlayer() for player but event.player because of beans. Player has a method called
.give(ItemStack) to give an item so event.player.give(ItemStack) . And in our case ItemStackJS is
'milk_bucket' . So our final code:

Now we can remove the debugging line Utils.server.tell("Is a Goat and is Holding a Bucket") .

It seem good. Right? All done. Wrong!

When programming, you always have to be careful about edge-cases. These are situations that
are typically at extremes on situations. For example you write some code to function differently if
you have 5 or more levels, but when you have 5 levels exactly, some logic differently causing an
expected result.

Our code currently mishandles an edge case. The edge case is when the player has one bucket in
their hand.

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--

 	event.player.give('milk_bucket')
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.give('milk_bucket')
})

When holding a stack of buckets and right clicking a goat, a bucket will be consumed and
you gain a milk bucket.

When holding one bucket in your hand, not in the first slot, and with nothing else in the first
slot. When right-clicking a goat the milk bucket does not stay in your hand as is intuitive, but
instead get placed in the first slot.

To resolve this bug, we could add an if to check if the count is one, then change the logic, but this
is not required because their is method that does everything for us. The method .giveInHand() is
identical to the .give() except it first attempts to put the item in the players hand if it is empty.

Putting this in our code looks like:

Now it seems like we are done! But compare with milking a cow, its just not as satisfying.

Adding Sound
Although adding feedback in to you creations, usually in the form of sound effects, and particles,
does not change the effect or your creation, it has a major effect on how engaging, polished, and
interesting your creation appears.

Luckily playing sound is really easy with KubeJS, because many different classes have a
.playSound() method.
We want the sound to originate from the goat being milked so we can use event.target to get the
goat, then just call .playSound() .

.playSound() takes some parameters:
Either the id of the sound, or the id, the volume , and the pitch .
Lets keep thing simple by only using the id .

Although you can register new sounds with KubeJS, it would be easier to use the existing cow
milking sound. The id of this sound is entity.cow.milk .

Putting this into the code looks like:

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.giveInHand('milk_bucket')
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.giveInHand('milk_bucket')
 	event.target.playSound('entity.cow.milk')
})

Now when milking a goat, you hear the milking sound.

There we go! We are done!

Recap
Now that we implemented a feature together you will be able to make some of your own basic
custom features too!

Don't be too intimidated by how long it took us, we went through every single detail, but you
already know those so it will take you a fraction of the time it took to make this.

Here is a step by step list of how you can make your own mechanic:

1. Determine what triggers the mechanic.
1. This is the event.
2. In this example we did item.entity_interact .
3. A list of all events is here.

2. Narrow down when the code of you event runs with guard statements.
1. Use an if and return.
2. In our case it is detecting the entity as a goat and the item as a bucket.
3. Use ProbeJS or the second wiki or the source code to get the information you need.

3. Break down what you want to do as code you can write.
1. In our case instead of the idea of filling a bucket with milk, the code takes one of the

item and give the player a bucket of milk.
2. Use ProbeJS or the second wiki or the source code to get the information you need.

4. Double check edge cases.
1. You should be always testing you code with most every change you make.
2. You need to be extra careful with edge cases, when making changes too.
3. In our case we replaced player.give() with player.giveInHand() .

5. Add Polish.
1. This includes fixing minor bugs on edge cases.
2. This also involves making sure the player gets feedback such as sound or particles.
3. In our case this is the milking sound.

Other Helpful Things to Know
Although we did not get to it with the example, here are some simple things that would be helpful
to know:

Cancelling events:
Sometimes you want the default action of an event to not occur.
An example is maybe if you wanted to add milking of horses.

There already is an interaction for right clicking horses, getting on them.
The player would both milk and be put on the horse if the event is not
canceled.

The syntax is event.cancel() .

https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS

You can place it anywhere in your code and the effect will be the same, the
default action will not occur.

Only some events are cancel-able.
The non-cancel-able events are listed in the list of all events.
You can tell if an event is cancel-able with event.isCancelable() .

Some events are partly cancel-able.
They are listed as cancel-able, but don't completely undo the default action.
For example entity.death event, canceling it will not prevent the entity from
dying, but will prevent loot, and statistics.

While loops
They syntax is the same as an if.
The function is the same, except the code inside of the loop will repeat until the
condition becomes false.
Learn more here.

Variables
Using let foo = bar will make a variable named foo and set it to the contents of bar.

To change the value of foo later use foo = bar if foo is already made.
A common use is to reduce repeated code.

So in our example we could have placed let t = event.target at the beginning.
Then every use of event.target could have been replaced with t so
event.target.type become t.type .

Variables massively increase what is possible, and as begin to reveal a lot more
hidden complexities (such as scope, reference vs value and more) that we not gonna
get into right now.
Learn more here.

https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_variables.asp

Getting Started

Using ProbeJS
ProbeJS is an add-on that is built exclusively to help you program.

What it does:
It generates documentation files from digging around in the game code itself. So, you get all the
methods, not only from KubeJS, but also from base Minecraft, no matter they're added by
modloader, or from the other mods you install. Not only can you view these docs, but they are also
formatted in a way that a sufficiently advanced code editor, like VSCode, can understand. So, you
will now get more relevant code suggestions too.

Installation:
Find ProbeJS on the 3rd Party addons list and download the relevant version for you.
Once you've installed it and relaunched your game, run the command /probejs dump .
Now you will need to wait a little while, but after some time, you should see a message alerting you
that the dump is complete.

What just happened?
You can now look and see that there is a new folder located at instance/kubejs/probe/ and inside of
here there are a more folders and files. These are your docs.

Setting up VS Code
1. In VS Code select file > open folder
2. This opens up a file explore window, select the KubeJS folder (instance/) and choose select

folder.

You're done!

Troubleshooting
For many people, autocompletions won't be popped up as they type. You need to configure your
VSCode to setup a valid JavaScript IDE so you can get 100% power of ProbeJS!

No Intellisense at All

https://mods.latvian.dev/books/kubejs-legacy/page/introduction-and-instillation#bkmrk-other-useful-tools
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons

For some reason, VSCode downloaded by some people are not having builtin JavaScript/TypeScript
support. To check if you have such support enabled, search @builtin JavaScript in the extension tab
in your VSCode, you should see a plugin named TypeScript and JavaScript Language Features , that's the
builtin extension for VSCode to support JS/TS.

If not, then you'll have to install the JavaScript and TypeScript Nightly to get JS/TS support.

Downloading Intellisense Models
If your ISP is weird, downloading Intellisense models for enabling support can take a long time. You
can consider switch to proxy or some other methods to change your Internet environment, maybe
even changing a WiFi can work. If not, then sorry, it's an Internet problem, there's no way to solve
it on VSCode's end.

Too Many Mods
Completion takes a significant amount of performance. You can't expect VSCode to run super-fast
on some ATM8-like modpacks, that's not possible.

For less than 150 mods, VSCode should run at a decent speed, for more than 300 mods,
completions are taking >10s since now VSCode need to examine over 100k item/block/entity
entries before telling you what to type next.

Usage
Properties and Methods of a Class
To know the methods of a class just type in the class name, like Item or BlockProperties , then type a
. now you will see a list of the public methods and properties.

ProbeJS will display the beaned accessors and mutators. However, due to the limitation of
JavaScript syntax, if there's a method having same name with a field/bean, then the name will
always be resolved to the method.

Type Checking and JSDoc
To add type checking for extra safety when coding JavaScript, add //@ts-check to the first line of a
JS file, then you will have VSCode guarding your types for the rest of the file. It's extremely useful
when you're working with some dangerous code which is likely to crash the game if you have a
mistake in type.

Sometimes, due to limitations of TypeScript, you might need to persuade VSCode to skip checking
for some part of your code. Adding //@ts-ignore would help you to do that.

Or maybe you want to tell VSCode: "This should be a list of item names!", or "This method should
have ... as params, and ... as return types!". Then you can add JSDoc to tell VSCode to do that:

Sometimes, if with //@ts-check enabled, you will need to add //@ts-ignore to calm VSCode to accept
your docs.

Searching by Keyword
If you are in VSCode press the explorer button in the top-ish left to open up the explorer pane.

Now navigate to probe > generated > globals.d.ts .
Press Ctrl + F and a little search window should pop up in your editor.
Now type in you key word and look through all the matches.

Tips
If you append class to the front and to the end then you will look for classes so like Item has
8635 results for me, but if I type class Item then the one I want!

In events.d.ts you will find events but only basic information about them.

In constants.d.ts you can see different pieces that you can use whereever.

If you want to find the methods of an event, say item.pickup find it in one of the files (In this case
events.documented.d.ts) and here is the line describing it:

/**
 * @type {Special.Item[]}
 */
let consumableItems = []

ServerEvents.recipes(event => {
	/**
	 *
	 * @param {Internal.Ingredient_} input
	 * @param {Internal.ItemStack_} output
	 * @returns {Internal.ShapedRecipeJS}
	 */
	let make3x3Recipe = (input, output) => {
		return event.recipes.minecraft.crafting_shaped(output, ["SSS", "SSS", "SSS"], { S: input })
	}
})

Look closely and find Internal.ItemPickupEventJS . Since it says Internal , we will look in the the
globals.d.ts file, but if it says Registry then we use registries.d.ts .

Now we will go to the generated file and search ItemPickupEventJS .
Then we find:

This means that we can use the methods .getItem() .getEntity() .getItemEntity() .canCancel() .item
.itemEntity and .entity .

But if we did potion.registry then we get Registry.Potion which brings us to:

So we can use event.create('cactus_juice') but that does not do much so we need to follow one step
further and go to the potion builder, which you see is Internal.PotionBuilder . Now we search
PotionBuilder in globals.d.ts then we see:

declare function onEvent(name: 'item.pickup', handler: (event: Internal.ItemPickupEventJS) => void)

/**
* Fired when an item is about to be picked up by the player.
* @javaClass dev.latvian.mods.kubejs.item.ItemPickupEventJS
*/
class ItemPickupEventJS extends Internal.PlayerEventJS {
 getItem(): Internal.ItemStackJS;
 getEntity(): Internal.EntityJS;
 getItemEntity(): Internal.EntityJS;
 canCancel(): boolean;
 get item(): Internal.ItemStackJS;
 get itemEntity(): Internal.EntityJS;
 get entity(): Internal.EntityJS;
 /**
 * Internal constructor, this means that it's not valid unless you use `java()`.
 */
 constructor(player: Internal.Player, entity: Internal.ItemEntity, stack: Internal.ItemStack);
}

class Potion extends Internal.RegistryObjectBuilderTypes$RegistryEventJS<any> {
	create(id: string, type: "basic"): Internal.PotionBuilder;
	create(id: string): Internal.PotionBuilder;
}

Now we see the methods that we can call after this.

So in our code we could write:

/**
* @javaClass dev.latvian.mods.kubejs.misc.PotionBuilder
*/
class PotionBuilder extends Internal.BuilderBase<Internal.Potion> {
 getRegistryType(): Internal.RegistryObjectBuilderTypes<Internal.Potion>;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean):
this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean,
showIcon: boolean): this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean,
showIcon: boolean, hiddenEffect: Internal.MobEffectInstance_): this;
 effect(effect: Internal.MobEffect_, duration: number): this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number): this;
 effect(effect: Internal.MobEffect_): this;
 addEffect(effect: Internal.MobEffectInstance_): this;
 createObject(): Internal.Potion;
 get registryType(): Internal.RegistryObjectBuilderTypes<Internal.Potion>;
 /**
 * Internal constructor, this means that it's not valid unless you use `java()`.
 */
 constructor(i: ResourceLocation);
}

onEvent('potion.registry', event => {
 	event.create('cactus_juice').effect('speed', 10, 5)
})

Events
Events that get fired during game to control recipes, world, etc.

Events

List of all events
This is a list of all events. It's possible that not all events are listed here, but this list will be updated
regularly.

Click on event ID to open it's class and see information, fields and methods.

Type descriptions:

Startup: Scripts go in kubejs/startup_scripts folder.
Server: Scripts go in kubejs/server_scripts folder. Will be reloaded when you run /reload
command.
Server Startup: Same as Server, and the event will be fired at least once when server
loads.
Client: Scripts go in kubejs/client_scripts folder. Currently only reloaded if you have KubeJS
UI installed in you run Ctrl+F5 in a menu.
Client Startup: Same as Client, and the event will be fired at least once when client loads.

ID Cancellable Type Note

init No Startup

postinit No Startup

loaded No Startup

command.registry No Server

command.run Yes Server

client.init No Client

client.debug_info.left No Client

client.debug_info.right No Client

client.generate_assets No Client

https://mods.latvian.dev/books/kubejs-legacy/page/eventjs
https://mods.latvian.dev/books/kubejs-legacy/page/eventjs
https://mods.latvian.dev/books/kubejs-legacy/page/eventjs
https://mods.latvian.dev/books/kubejs-legacy/page/command-registry
https://mods.latvian.dev/books/kubejs-legacy/page/commandeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/eventjs

ID Cancellable Type Note

client.logged_in No Client

client.logged_out No Client

client.tick No Client

server.load No Server

server.unload No Server

server.tick No Server

server.datapack.first No Server

server.datapack.last No Server

recipes No Server

recipes.after_load No Server Does not work 1.18+

level.load No Server Replace level with world in
1.16

level.unload No Server Replace level with world in
1.16

level.tick No Server Replace level with world in
1.16

level.explosion.pre Yes Server Replace level with world in
1.16

level.explosion.post No Server Replace level with world in
1.16

player.logged_in No Server

player.logged_out No Server

player.tick No Server

player.data_from_server. Yes Client

player.data_from_client. Yes Server

player.chat Yes Server

https://mods.latvian.dev/books/kubejs-legacy/page/datapack-load-events
https://mods.latvian.dev/books/kubejs-legacy/page/datapack-load-events
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs

ID Cancellable Type Note

player.advancement No Server

player.inventory.opened No Server

player.inventory.closed No Server

player.inventory.changed No Server

player.chest.opened No Server

player.chest.closed No Server

entity.death Yes Server

entity.attack Yes Server

entity.drops Yes Server

entity.check_spawn Yes Server

entity.spawned Yes Server

block.registry No Startup

block.missing_mappings No Server

block.tags No Server

block.right_click Yes Server

block.left_click Yes Server

block.place Yes Server

block.break Yes Server

block.drops No Server

item.registry No Startup

item.missing_mappings No Server

https://mods.latvian.dev/books/kubejs-legacy/page/custom-blocks
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/custom-items

ID Cancellable Type Note

item.tags No Server

item.right_click Yes Server

item.right_click_empty No Server

item.left_click No Server

item.entity_interact Yes Server

item.modification No Startup

item.pickup Yes Server

item.tooltip No Client

item.toss Yes Server

item.crafted No Server

item.smelted No Server

fluid.registry No Startup

fluid.tags No Server

entity_type.tags No Server

worldgen.add No Startup

worldgen.remove No Startup

https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/item-modification
https://mods.latvian.dev/books/kubejs-legacy/page/itemtooltipeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/custom-fluids
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/worldgenaddeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/worldgenremoveeventjs

Events

Custom Items
This is a startup_scripts/ event

Valid item types:
"basic"

default
"sword"
"pickaxe"
"axe"
"shovel"
"hoe"
"helmet"
"chestplate"
"leggings"
"boots"

Other methods item builder supports:
You can chain these methods after create()

// Listen to item registry event
onEvent('item.registry', event => {

 // The texture for this item has to be placed in kubejs/assets/kubejs/textures/item/test_item.png
 // If you want a custom item model, you can create one in Blockbench and put it in
kubejs/assets/kubejs/models/item/test_item.json
 event.create('test_item')

 // You can chain builder methods as much as you like
 event.create('test_item_2').maxStackSize(16).glow(true)

 // You can specify item type as 2nd argument in create(), some types have different available methods
 event.create('custom_sword', 'sword').tier('diamond').attackDamageBaseline(10.0)
})

Physical Properties
maxStackSize(size)
unstackable()

Identical to maxStackSize(1)
maxDamage(damage)

ie max durability of the item
burnTime(ticks)

In a furnace
fireResistant(true/false)

Non-Model Visual Stuff
rarity('rarity')

Options are:
"common"
"uncommon"
"rare"
"epic"

glow(true/false)
tooltip(text...)

The text under the item name to provide details about it
color(index, colorHex)

If you do not have a custom model, index is 0
If you do have a custom model, then index is the layer hat you want to affect
there is an example below

color((item, number) => {...})
any code you want
must return a color
there is an example below
???

displayName(name)
name(item => {...})

you can put whatever code in there you want
must return a string
???

translationKey(key)
???
You don't need this unless you know what you are doing

Model Editing

Anything with a ??? may not be completely accurate

https://mods.latvian.dev/link/9#bkmrk-dynamic-tinting-and-
https://mods.latvian.dev/link/9#bkmrk-dynamic-tinting-and-

There is an example below

textureJson(json)
for example {layer0:"minecraft:item/sand",layer1:"minecraft:item/paper"}
The contents of the texture part of item model
???

modelJson(json)
the entire json that you would put for a item model, you can just put in here
???

parentModel(modelName)
Set the "parent" property of this items model to modelName

texture(customTexturePath)
for example "minecraft:item/feather"

texture(key, customTexturePath)
if key is "layer0", then its the same as texture(customTexturePath)
???

Bar

There an example farther below

barColor((item) => {...})
must return a color
any code you want
???

barWidth(width)
???

Custom Uses

The is a section below for an example

useAnimation(animation)
Can be:

"spear"
trident

"crossbow"
"eat"

food
"spyglass"
"block"
"none"
"bow"
"drink"

???

https://mods.latvian.dev/link/9#bkmrk-dynamic-tinting-and-
https://mods.latvian.dev/link/9#bkmrk-bar-0
https://mods.latvian.dev/link/9#bkmrk-custom-uses-0

useDuration(itemstack => {...})
any code you want
for example useDuration(itemstack => 60)

three seconds
must return a whole number
if you want something that does not end on its own, then use something like 72000
(an hour)
???

use((level, player, hand) => {...})
for example use(() => true)
any code you want
item is usable if it is true
must return a boolean
???

finishUsing((itemstack, level, entity) => {...})
any code you want
when the duration completes
???

releaseUsing((itemstack, level, entity, tick) => {...})
any code you want
when released before the duration completes
???

Miscellaneous
type(type)

for 1.16
tag(resourceLocation)

???
tool(type, level)

for 1.16
modifyAttribute(attribute, identifier, d, operation)

???
group(group_id)

Creative mode tab
Vanilla tabs are:

"search"
"buildingBlocks"
"decorations"
"redstone"
"transportation"
"misc"
"food"
"tools"
"combat"
"brewing"

containerItem(id)
A item to reference properties of
???

subtypes(item => {...})
must return a itemstack collection
This is for making JEI or creative menu have the same item multiple times with
different NBT
any code you want
???

food(foodBuilder => {...})
There is an example farther down

Tool
Methods available if you use 'sword', 'pickaxe', 'axe', 'shovel' or 'hoe' type:

tier(toolTier)
Can be:

"wood"
"stone"
"iron"
"gold"
"diamond"
"netherite"

modifyTier(tier => ...)
Same syntax as custom tool tier, see below

attackDamageBaseline(damage)
You only want to modify this if you are creating a custom weapon such as Spear,
Battleaxe, etc.

attackDamageBonus(damage)
speedBaseline(speed)

Same as attackDamageBaseline, only modify for custom weapon types
speed(speed)

Armor
Methods available if you use 'helmet', 'chestplate', 'leggings' or 'boots' type:

tier('armorTier')
Can be:

"leather"
"chainmail"
"iron"
"gold"
"diamond"
"turtle"

https://mods.latvian.dev/link/9#bkmrk-custom-foods

"netherite"
modifyTier(tier => ...) // Same syntax as custom armor tier, see below

Creating custom tool and armor tiers
All values are optional and by default are based on iron tier

Examples:
Custom Foods
These methods are each optional, and you may include as many or as few as you like.

onEvent('item.registry.tool_tiers', event => {
 event.add('tier_id', tier => {
 tier.uses = 250
 tier.speed = 6.0
 tier.attackDamageBonus = 2.0
 tier.level = 2
 tier.enchantmentValue = 14
 tier.repairIngredient = '#forge:ingots/iron'
 })
})

onEvent('item.registry.armor_tiers', event => {
 // Slot indicies are [FEET, LEGS, BODY, HEAD]
 event.add('tier_id', tier => {
 tier.durabilityMultiplier = 15 // Each slot will be multiplied with [13, 15, 16, 11]
 tier.slotProtections = [2, 5, 6, 2]
 tier.enchantmentValue = 9
 tier.equipSound = 'minecraft:item.armor.equip_iron'
 tier.repairIngredient = '#forge:ingots/iron'
 tier.toughness = 0.0 // diamond has 2.0, netherite 3.0
 tier.knockbackResistance = 0.0
 })
})

onEvent('item.registry', event => {
	event.create('magic_steak').food(food => {
		food
 		.hunger(6)

Custom Uses

 		.saturation(6)//This value does not directly translate to saturation points gained
 		//The real value can be assumed to be:
 		//min(hunger * saturation * 2 + saturation, foodAmountAfterEating)
 		.effect('speed', 600, 0, 1)
 		.removeEffect('poison')
 		.alwaysEdible()//Like golden apples
 		.fastToEat()//Like dried kelp
 		.meat()//Dogs are willing to eat it
 		.eaten(ctx => {//runs code upon consumption
 		ctx.player.tell('Yummy Yummy!')
 		//If you want to modify this code then you need to restart the game.
 		//However, if you make this code call a global startup function
 		//and place the function *outside* of an 'onEvent'
 		//then you may use the command:
 		// /kubejs reload startup_scripts
 		//to reload the function instantly.
 	})
	})
})

onEvent("item.registry", event => {
event.create("nuke_soda", "basic")
 .tooltip("§5Taste of Explosion!")
 .tooltip("§c...Inappropriate intake may cause disastrous result.")
 /**
 * The use animation of the item, can be "spear" (trident),
 * "crossbow", "eat" (food), "spyglass", "block", "none", "bow", "drink"
 * When using certain animations, corresponding sound will be played.
 */
 .useAnimation("drink")
 /**
 * The duration before the item finishs its using,
 * if you need something like hold-and-charge time (like bow),
 * consider set this to 72000 (1h) or more.
 * A returned value of 0 or lower will render the item not usable.
 */
 .useDuration((itemstack) => 64)
 /**

Bar

Dynamic Tinting and Model Stuff

 * When item is about to be used.
 * If true, item will starts it use animation if duration > 0.
 */
 .use((level, player, hand) => true)
 /**
 * When the item use duration expires.
 */
 .finishUsing((itemstack, level, entity) => {
 let effects = entity.potionEffects;
 effects.add("haste", 120 * 20)
 itemstack.itemStack.shrink(1)
 if (entity.player) {
 entity.minecraftPlayer.addItem(Item.of("minecraft:glass_bottle").itemStack)
 }
 return itemstack;
 })
 /**
 * When the duration is not expired yet, but
 * players release their right button.
 * Tick is how many ticks remained for player to finish using the item.
 */
 .releaseUsing((itemstack, level, entity, tick) => {
 itemstack.itemStack.shrink(1)
 level.createExplosion(entity.x, entity.y, entity.z).explode()
 })
})

event.create("hammer")
 //Determine how long the bar is, should be an integer between 0 (empty) and 13 (full)
 //If the value is below 0, it will be treated as 0.
 //The value is capped at 13, any value over 13 will be considered "full", thus making it not shown
 .barWidth(i => i.nbt.contains("hit_count") ? i.nbt.getInt("hit_count") / 13.0 : 0)
 //Determine what color should the bar be.
 .barColor(i => Color.AQUA)

onEvent("item.registry", (event) => {
	/**
	 * Old style with just setting color by index still works!
	 */
	event
		.create("old_color_by_index")
		.textureJson({
			layer0: "minecraft:item/paper",
			layer1: "minecraft:item/ghast_tear",
		})
		.color(0, "#70F00F")
		.color(1, "#00FFF0");

	event
		.create("cooler_sword", "sword")
		.displayName("Test Cooler Sword")
		.texture("minecraft:item/iron_sword")
		.color((itemstack) => {
			/**
			 * Example by storing the color in the nbt of the itemstack
			 * You have to return -1 to apply no tint.
			 *
			 * U can test this through: /give @p kubejs:cooler_sword{color:"#ff0000"}
			 */
			if (itemstack.nbt && itemstack.nbt.color) {
				return itemstack.nbt.color;
			}

			return -1;
		});

	event
		.create("test_item")
		.displayName("Test Item")
		.textureJson({
			layer0: "minecraft:item/beef",
			layer1: "minecraft:item/ghast_tear",
		})
		.color((itemstack, tintIndex) => {
			/**

			 * If you want to apply the color to a specific layer, you can use the tintIndex
			 * tintIndex is the texture layer index from the model: layer0 -> 0, layer1 -> 1, etc.
			 * U can use the `Color` wrapper for some default colors
			 *
			 * This example will apply the color to the ghast_tear texture.
			 */
			if (tintIndex == 1) {
				return Color.BLUE;
			}
			return -1;
		});

	/**
	 * Set a texture for a specific layer
	 */
	event.create("test_sword", "sword").displayName("Test Sword").texture("layer0", "minecraft:item/bell");

	/**
	 * Directly set your custom model json
	 */
	event.create("test_something").displayName("Test something").modelJson({
		parent: "minecraft:block/anvil",
	});
});

Events

EventJS

Parent class

Object

Can be cancelled
No

Variables and Functions
Name Return Type Info

cancel() void Cancels event. If the event can't
be cancelled, it won't do anything.

This event is the most basic event class, parent of all other events.

https://mods.latvian.dev/books/kubejs/page/object
https://mods.latvian.dev/books/kubejs/page/primitive-types

Events

Custom Blocks
This is a startup script.

The texture for this block has to be placed in kubejs/assets/kubejs/textures/block/test_block.png .

onEvent('block.registry', event => {
 event.create('test_block')
 	 .material('glass')
 .hardness(0.5)
 .displayName('Test Block') // No longer required in 1.18.2+
 .tagBlock('minecraft:mineable/shovel') // Make it mine faster using a shovel in 1.18.2+
 	 .tagBlock('minecraft:needs_iron_tool') // Make it require an iron or higher level tool on 1.18.2+
 	 .requiresTool(true) // Make it require a tool to drop ay loot

 // Block with custom type (see below for list of types for 1.18 (use .type for 1.16))
 event.create('test_block_slab', 'slab').material('glass').hardness(0.5)

 //uses a combo of properties (things you might consider blockstate) and random tick to make the block
eventually change to test_block, but only progresses if waterlogged

event.create('test_block_2').material('glass').hardness(0.2).property(BlockProperties.WATERLOGGED).property(B
lockProperties.AGE_7).randomTick(tick => {
 const block = tick.block
 const properties = block.properties
 const age = Number(properties.age)
 if (properties.waterlogged == 'false') return
 if (age == 7) {
 block.set('kubejs:test_block')
 } else {
 block.set('kubejs:test_block_2',{waterlogged:'true',age:`${age+1}`})
 })
})

If you want a custom block model, you can create one in Blockbench and put it in
kubejs/assets/kubejs/models/block/test_block.json .

List of available materials - to change break/walk sounds and to change some properties.

Materials (1.18.2)

air

wood

stone

metal

grass

dirt

water

lava

leaves

plant

sponge

wool

sand

glass

explosive

ice

Materials (1.18.2)

snow

clay

vegetable

dragon_egg

portal

cake

web

slime

honey

berry_bush

lantern

Other methods block builder supports:
displayName('name')

Not required for 1.18.2+
material('material')

See list above
type('basic')

See available types below.
Do not use for 1.18.2, use the syntax in the second example above

hardness(float)
>= 0.0

resistance(float)
>= 0.0

unbreakable()
Sets the resistance to MAX_VALUE and hardness to -1, like bedrock

lightLevel(int)
0.0 - 1.0

harvestTool('tool', level)
Available tools: pickaxe, axe, hoe, shovel
level >= 0
Not used in 1.18.2+, see tag in example above

opaque(boolean)
fullBlock(boolean)
requiresTool(boolean)
renderType('type')

Available types: solid, cutout, translucent
cutout required for blocks with texture like glass
translucent required for blocks like stained glass

color(tintindex, color)
textureAll('texturepath')
texture('side', 'texturepath')
model('modelpath')
noItem()
box(x0, y0, z0, x1, y1, z1, true)

0.0 - 16.0
default is (0,0,0,16,16,16, true)

box(x0, y0, z0, x1, y1, z1, false)
Same as above, but in 0.0 - 1.0 scale
default is (0,0,0,1,1,1, false)

noCollision()
notSolid()
waterlogged()
noDrops()
slipperiness(float)
speedFactor(float)
jumpFactor(float)
randomTick(randomTickEvent => {})

see below
item(itemBuilder => {})
setLootTableJson(json)
setBlockstateJson(json)
setModelJson(json)
noValidSpawns(boolean)
suffocating(boolean)
viewBlocking(boolean)
redstoneConductor(boolean)
transparent(boolean)
defaultCutout()

batches a bunch of methods to make blocks such as glass
defaultTranslucent()

https://mods.latvian.dev/books/kubejs-legacy/page/custom-items

similar to defaultCutout() but using translucent layer instead
tagBlock('forge:something')

adds a block tag
tagItem('forge:something_better')

adds an item tag
tagBoth('forge:something')

adds both block and item tag
property(BlockProperty)

See example above, but adds in more "blockstates" to the block
Example: BlockProperties.WATERLOGGED
You can add as many or few as you desire

RandomTickEvent callback properties
BlockContainerJS block
Random random
LevelJS level
ServerJS server

Block Properties
The default 1.18 properties are:

"MAX_RESPAWN_ANCHOR_CHARGES"
"BAMBOO_LEAVES"
"HANGING"
"WEST_WALL"
"BOTTOM"
"EYE"
"HALF"
"DRAG"
"MAX_ROTATIONS_16"
"SOUTH"
"MIN_RESPAWN_ANCHOR_CHARGES"
"DISTANCE"
"LOCKED"
"EXTENDED"
"SCULK_SENSOR_PHASE"
"LEVEL"
"DOOR_HINGE"
"STAIRS_SHAPE"
"EGGS"
"LAYERS"
"CONDITIONAL"
"EAST_WALL"
"HATCH"

"ORIENTATION"
"LEVEL_CAULDRON"
"RAIL_SHAPE_STRAIGHT"
"SIGNAL_FIRE"
"STRUCTUREBLOCK_MODE"
"PISTON_TYPE"
"MIN_LEVEL"
"HAS_BOOK"
"ATTACH_FACE"
"WATERLOGGED"
"FALLING"
"AGE_25"
"TRIGGERED"
"MAX_LEVEL_8"
"UNSTABLE"
"CHEST_TYPE"
"AGE_5"
"SOUTH_WALL"
"AGE_7"
"STABILITY_MAX_DISTANCE"
"BELL_ATTACHMENT"
"AGE_1"
"MAX_LEVEL_3"
"ATTACHED"
"AGE_3"
"STAGE"
"AGE_2"
"POWER"
"MAX_DISTANCE"
"HAS_BOTTLE_1"
"HAS_BOTTLE_0"
"PICKLES"
"HAS_BOTTLE_2"
"OPEN"
"DRIPSTONE_THICKNESS"
"AGE_15"
"LEVEL_HONEY"
"CANDLES"
"LEVEL_COMPOSTER"
"LIT"
"EAST_REDSTONE"
"OCCUPIED"
"MODE_COMPARATOR"
"NORTH_REDSTONE"
"IN_WALL"
"SNOWY"

"DOWN"
"WEST"
"NORTH_WALL"
"MIN_LEVEL_CAULDRON"
"BED_PART"
"NORTH"
"LEVEL_FLOWING"
"TILT"
"UP"
"SOUTH_REDSTONE"
"MAX_AGE_15"
"HORIZONTAL_FACING"
"BITES"
"SLAB_TYPE"
"MAX_AGE_2"
"MAX_AGE_1"
"ROTATION_16"
"MAX_AGE_7"
"STABILITY_DISTANCE"
"MAX_AGE_5"
"MAX_AGE_3"
"MAX_AGE_25"
"DELAY"
"AXIS"
"MAX_LEVEL_15"
"HORIZONTAL_AXIS"
"RAIL_SHAPE"
"MOISTURE"
"VERTICAL_DIRECTION"
"DOUBLE_BLOCK_HALF"
"NOTE"
"BERRIES"
"RESPAWN_ANCHOR_CHARGES"
"EAST"
"PERSISTENT"
"HAS_RECORD"
"FACING_HOPPER"
"NOTEBLOCK_INSTRUMENT"
"POWERED"
"SHORT"
"VINE_END"
"WEST_REDSTONE"
"ENABLED"
"INVERTED"
"FACING"
"DISARMED"

You can make your own also using the following example:

Types
basic
detector
slab
stairs
fence
fence_gate
wall
wooden_pressure_plate
stone_pressure_plate
wooden_button
stone_button
falling
crop

Detector Block Types
The detector block type can be used to run code when the block is powered with redstone signal.

Startup script code:

Server script code:

const $BooleanProperty = Java.loadClass('net.minecraft.world.level.block.state.properties.BooleanProperty')
const $IntegerProperty = Java.loadClass('net.minecraft.world.level.block.state.properties.IntegerProperty')

onEvent('block.registry', event => {
 event.create('my_block').property($IntegerProperty.create("uses", 0,
2)).property($BooleanProperty.create("empty"))
})

onEvent('block.registry', event => {
 event.create('test_block','detector').detectorId('myDetector')
}

onEvent('block.detector.myDetector.unpowered', event => { // you can also use powered and changed instead
of upowered
 event.block.set('tnt')
}

Events

CommandEventJS

Information
This event is fired when a command is executed on server side.

Parent class
EventJS

Can be cancelled
Yes

Variables and Functions
Name Type Info

parseResults ParseResults<CommandSource> Command params

exception Exception Error, set if something went wrong

This event needs cleanup! Using it is not recommended.

https://mods.latvian.dev/books/kubejs/page/eventjs
https://github.com/Mojang/brigadier/blob/master/src/main/java/com/mojang/brigadier/ParseResults.java

Events

TagEventJS
This event is fired when a tag collection is loaded, to modify it with script. You can add and remove
tags for items, blocks, fluids and entity types.

This goes into server scripts.

Parent class
EventJS

Can be cancelled
No

Variables and Functions
Name Type Info

type String Tag collection type.

get(String tag) TagWrapper Returns specific tag container which
you can use to add or remove objects
to. tag parameter can be something
like 'forge:ingots/copper'. If tag
doesn't exist, it will create a new one.

add(String tag, String[]/Regex ids) TagWrapper Shortcut method for
event.get(tag).add(ids).

remove(String tag, String[]/Regex ids) TagWrapper Shortcut method for
event.get(tag).remove(ids).

removeAll(String tag) TagWrapper Shortcut method for
event.get(tag).removeAll().

removeAllTagsFrom(String[] ids) void Removes all tags from object

Tags are per item/block/fluid/entity type and as such cannot be added based on things like
NBT data!

https://mods.latvian.dev/books/kubejs-legacy/page/eventjs
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string

TagWrapper class
Variables and Functions

Name Type Info

add(String[]/Regex ids) TagWrapper (itself) Adds an object to this tag. If string
starts with # then it will add all
objects from the second tag. It can be
either single string, regex
(/regex/flags) or array of either.

remove(String[]/Regex ids) TagWrapper (itself) Removes an object from tag, works
the same as add().

removeAll() TagWrapper (itself) Removes all entries from tag.

getObjectIds() Collection<ResourceLocation> Returns a list of all entries in a tag.
Will resolve any sub-tags.

Examples
// Listen to item tag event
onEvent('item.tags', event => {
 // Get the #forge:cobblestone tag collection and add Diamond Ore to it
 event.add('forge:cobblestone', 'minecraft:diamond_ore')

 // Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
 event.remove('forge:cobblestone', 'minecraft:mossy_cobblestone')

 // Get #forge:ingots/copper tag and remove all entries from it
 event.removeAll('forge:ingots/copper')

 // Required for FTB Quests to check item NBT
 event.add('itemfilters:check_nbt', 'some_item:that_has_nbt_types')

 // You can create new tags the same way you add to existing, just give it a name
 event.add('forge:completely_new_tag', 'minecraft:clay_ball')

 // Removes all tags from this entry
 event.removeAllTagsFrom('minecraft:stick')

 // Add all items from the forge:stone tag to the c:stone tag, unless the id contains diorite

https://mods.latvian.dev/books/kubejs-legacy/page/string
https://mods.latvian.dev/books/kubejs-legacy/page/string

 const stones = event.get('forge:stone').getObjectIds()
 const blacklist = Ingredient.of(/.*diorite.*/)
 stones.forEach(stone => {
 if (!blacklist.test(stone)) {
 event.add('c:stone', stone)
 }
 })
})

Recipes use item tags, not block or fluid tags, even if items representing those are blocks.
Like minecraft:cobblestone even if it's a block, it will still be an item tag for recipes.

tags.blocks and tags.fluids are for adding tags to block and fluid types, they work the same
way. You can find existing block and fluid tags if you look at a block with F3 mode enabled,
on side. These are mostly only used for technical reasons, and like mentioned above, if its
for recipes/inventory, you will want to use tags.items even for blocks.

Events

Loot Table Modification

Example from Factorial: (adds 1-3 leaves dropped from all Leaves blocks, 4-8 logs from all log and
wood blocks and 4-8 stone from Stone, Cobblestone, Andesite, Diorite and Granite)

onEvent('block.loot_tables', event => {
 event.addSimpleBlock('minecraft:dirt', 'minecraft:red_sand')
})

onEvent('block.loot_tables', event => {
 event.addSimpleBlock('minecraft:dirt') // To drop itself (fix broken blocks)
 event.addSimpleBlock(/minecraft:.*_ore/, 'minecraft:red_sand') // To drop a different item
})

onEvent('block.loot_tables', event => {
 event.addBlock('minecraft:dirt', table => { // Build loot table manually
 table.addPool(pool => {
 pool.rolls = 1 // fixed
 // pool.rolls = [4, 6] // or {min: 4, max: 6} // uniform
 // pool.rolls = {n: 4, p: 0.3} // binominal
 pool.survivesExplosion()
 pool.addItem('minecraft:dirt')
 pool.addItem('minecraft:dirt', 40) // 40 = weight
 pool.addItem('minecraft:dirt', 40, [4, 8]) // [4-8] = count modifier, uses same syntax as rolls
 // pool.addCondition({json condition, see vanilla wiki})
 // pool.addEntry({json entry, see vanilla wiki for non-items})
 })
 })
})

onEvent('block.loot_tables', event => {
	event.addBlock(/minecraft:.*_leaves/, table => {
		table.addPool(pool => {
			pool.survivesExplosion()
			pool.addItem('factorial:leaf', 1, [1, 3])
		})

You can also modify existing loot tables to add items to them:

Other loot table types work too:

	})

	event.addBlock(/minecraft:.*_(log|wood)/, table => {
		table.addPool(pool => {
			pool.survivesExplosion()
			pool.addItem('factorial:wood', 1, [4, 8])
		})
	})

	event.addBlock([
		'minecraft:stone',
		'minecraft:cobblestone',
		'minecraft:andesite',
		'minecraft:diorite',
		'minecraft:granite'
], table => {
		table.addPool(pool => {
			pool.rolls = [4, 8] // Roll the pool instead of individual items
			pool.survivesExplosion()
			pool.addItem('factorial:stone', 1)
		})
	})
})

onEvent('block.loot_tables', event => {
 // all dirt blocks have a 50% chance to drop an enchanted diamond sword named "test"
 event.modifyBlock(/^minecraft:.*dirt/, table => {
 table.addPool(pool => {
 pool.addItem('minecraft:diamond_sword').randomChance(0.5).enchantWithLevels(1,
true).name(Text.of('Test').blue())
 })
 })
})

onEvent('entity.loot_tables', event => {
 // Add a loot table for the zombie that will drop 5 of either carrot (25% chance) or apple (75% chance)

Supported table types:

Event ID Override method name Modify method name

generic.loot_tables addGeneric modify

block.loot_tables addBlock modifyBlock

entity.loot_tables addEntity modifyEntity

gift.loot_tables addGift modify

fishing.loot_tables addFishing modify

chest.loot_tables addChest modify

 // Because the zombie already has a loot table, this will override the current one
 event.addEntity('minecraft:zombie', table => {
 table.addPool(pool => {
 pool.rolls = 5
 pool.addItem('minecraft:carrot', 1)
 pool.addItem('minecraft:apple', 3)
 })
 })

 event.modifyEntity('minecraft:pig', table => {
 table.addPool(pool => {
 // Modify pig loot table to *also* drop dirt on top of its regular drops
 pool.addItem('minecraft:dirt')
 })
 })
})

Events

RecipeEventJS
Examples
The most basic script to add a single recipe:

The most basic script to remove a recipe:

Example recipe script:

onEvent('recipes', event => {
 event.shaped('3x minecraft:stone', [
 'SAS',
 'S S',
 'SAS'
], {
 S: 'minecraft:sponge',
 A: 'minecraft:apple'
 })
})

onEvent('recipes', event => {
 event.remove({output: 'minecraft:stick'})
})

// kubejs/server_scripts/example.js
// This is just an example script to show off multiple types of recipes and removal methods
// Supports /reload

// Listen to server recipe event
onEvent('recipes', event => {
 // Remove broken recipes from vanilla and other mods
 // This is on by default, so you don't need this line
 //event.removeBrokenRecipes = true

 event.remove({}) // Removes all recipes (nuke option, usually not recommended)

 event.remove({output: 'minecraft:stone_pickaxe'}) // Removes all recipes where output is stone pickaxe
 event.remove({output: '#minecraft:wool'}) // Removes all recipes where output is Wool tag
 event.remove({input: '#forge:dusts/redstone'}) // Removes all recipes where input is Redstone Dust tag
 event.remove({mod: 'quartzchests'}) // Remove all recipes from Quartz Chests mod
 event.remove({type: 'minecraft:campfire_cooking'}) // Remove all campfire cooking recipes
 event.remove({id: 'minecraft:glowstone'}) // Removes recipe by ID. in this case,
data/minecraft/recipes/glowstone.json
 event.remove({output: 'minecraft:cooked_chicken', type: 'minecraft:campfire_cooking'}) // You can combine
filters, to create ANDk logic

 // You can use 'mod:id' syntax for 1 sized items. For 2+ you need to use '2x mod:id' or Item.of('mod:id', count)
syntax. If you want NBT or chance, 2nd is required

 // Add shaped recipe for 3 Stone from 8 Sponge in chest shape
 // (Shortcut for event.recipes.minecraft.crafting_shaped)
 // If you want to use Extended Crafting, replace event.shapeless with
event.recipes.extendedcrafting.shapeless_table
 event.shaped('3x minecraft:stone', [
 'SAS',
 'S S',
 'SAS'
], {
 S: 'minecraft:sponge',
 A: 'minecraft:apple'
 })

 // Add shapeless recipe for 4 Cobblestone from 1 Stone and 1 Glowstone
 // (Shortcut for event.recipes.minecraft.crafting_shapeless)
 // If you want to use Extended Crafting, replace event.shapeless with
event.recipes.extendedcrafting.shaped_table
 event.shapeless('4x minecraft:cobblestone', ['minecraft:stone', '#forge:dusts/glowstone'])

 // Add Stonecutter recipe for Golden Apple to 4 Apples
 event.stonecutting('4x minecraft:apple', 'minecraft:golden_apple')
 // Add Stonecutter recipe for Golden Apple to 2 Carrots
 event.stonecutting('2x minecraft:carrot', 'minecraft:golden_apple')

 // Add Furnace recipe for Golden Apple to 3 Carrots
 // (Shortcut for event.recipes.minecraft.smelting)
 event.smelting('2x minecraft:carrot', 'minecraft:golden_apple')

 // Similar recipe to above but this time it has a custom, static ID - normally IDs are auto-generated and will
change. Useful for Patchouli
 event.smelting('minecraft:golden_apple', 'minecraft:carrot').id('mymodpack:my_recipe_id')

 // Add similar recipes for Blast Furnace, Smoker and Campfire
 event.blasting('3x minecraft:apple', 'minecraft:golden_apple')
 event.smoking('5x minecraft:apple', 'minecraft:golden_apple')
 event.campfireCooking('8x minecraft:apple', 'minecraft:golden_apple')
 // You can also add .xp(1.0) at end of any smelting recipe to change given XP

 // Add a smithing recipe that combines 2 items into one (in this case apple and gold ingot into golden apple)
 event.smithing('minecraft:golden_apple', 'minecraft:apple', 'minecraft:gold_ingot')

 // Create a function and use that to make things shorter. You can combine multiple actions
 let multiSmelt = (output, input, includeBlasting) => {
 event.smelting(output, input)

 if (includeBlasting) {
 event.blasting(output, input)
 }
 }

 multiSmelt('minecraft:blue_dye', '#forge:gems/lapis', true)
 multiSmelt('minecraft:black_dye', 'minecraft:ink_sac', true)
 multiSmelt('minecraft:white_dye', 'minecraft:bone_meal', false)

 // If you use custom({json}) it will be using vanilla Json/datapack syntax. Must include "type": "mod:recipe_id"!
 // You can add recipe to any recipe handler that uses vanilla recipe system or isn't supported by KubeJS
 // You can copy-paste the json directly, but you can also make more javascript-y by removing quotation marks
from keys
 // You can replace {item: 'x', count: 4} in result fields with Item.of('x', 4).toResultJson()
 // You can replace {item: 'x'} / {tag: 'x'} with Ingredient.of('x').toJson() or Ingredient.of('#x').toJson()
 // In this case, add Create's crushing recipe, Oak Sapling to Apple + 50% Carrot

 // Important! Create has integration already, so you don't need to use this. This is just an example for datapack
recipes!
 // Note that not all mods format their jsons the same, often the key names ('ingredients', 'results', ect) are
different.
 // You should check inside the mod jar (mod.jar/data/modid/recipes/) for examples
 event.custom({

 type: 'create:crushing',
 ingredients: [
 Ingredient.of('minecraft:oak_sapling').toJson()
],
 results: [
 Item.of('minecraft:apple').toResultJson(),
 Item.of('minecraft:carrot').withChance(0.5).toResultJson()
],
 processingTime: 100
 })

 // Example of using items with NBT in a recipe
 event.shaped('minecraft:book', [
 'CCC',
 'WGL',
 'CCC'
], {
 C: '#forge:cobblestone',
 // Item.of('id', '{key: value}'), it's recommended to use /kubejs hand
 // If you want to add a count its Item.of('id', count, '{key: value}'). This won't work here though as crafting
table recipes to do accept stacked items
 L: Item.of('minecraft:enchanted_book', '{StoredEnchantments:[{lvl:1,id:"minecraft:sweeping"}]}'),
 // Same principle, but if its an enchantment, there's a helper method
 W: Item.of('minecraft:enchanted_book').enchant('minecraft:respiration', 2),
 G: '#forge:glass'
 })

 // In all shapeless crafting recipes, replace any planks with Gold Nugget in input items
 event.replaceInput({type: 'minecraft:crafting_shapeless'}, '#minecraft:planks', 'minecraft:gold_nugget')

 // In all recipes, replace Stick with Oak Sapling in output items
 event.replaceOutput({}, 'minecraft:stick', 'minecraft:oak_sapling')

 // By default KubeJS will mirror and shrink recipes, which makes things like UU-Matter crafting (from ic2) harder
to do as you have less shapes.
 // You can use noMirror() and noShrink() to stop this behaviour.
 event.shaped('9x minecraft:emerald', [
 ' D ',
 'D ',
 ' '

Possible settings you can change for recipes. It's recommended that you put this in it's own server
scripts file, like settings.js

As mentioned before, you can add any recipe from any mod with JSON syntax (see event.custom({})
) but these mods are supported as addons with special syntax:

KubeJS Mekanism
KubeJS Immersive Engineering
KubeJS Thermal
KubeJS Blood Magic
KubeJS Create

Ingredient Actions

You can transform ingredients in shaped and shapeless recipes by adding these functions at end of
it:

.damageIngredient(IngredientFilter filter, int damage?) // Will damage item when you craft
with it
.replaceIngredient(IngredientFilter filter, ItemStackJS item) // Will replace item with
another (like bucket)

], {
 D: 'minecraft:diamond'
 }).noMirror().noShrink()
})

// priority: 5

// Enable recipe logging, off by default
settings.logAddedRecipes = true
settings.logRemovedRecipes = true
// Enable skipped recipe logging, off by default
settings.logSkippedRecipes = true
// Enable erroring recipe logging, on by default, recommended to be kept to true
settings.logErroringRecipes = false

Poorly documented things below!

https://www.curseforge.com/minecraft/mc-mods/kubejs-mekanism
https://www.curseforge.com/minecraft/mc-mods/kubejs-immersive-engineering
https://www.curseforge.com/minecraft/mc-mods/kubejs-thermal
https://www.curseforge.com/minecraft/mc-mods/kubejs-blood-magic
https://www.curseforge.com/minecraft/mc-mods/kubejs-create

.keepIngredient(IngredientFilter filter) // Will keep item without doing anything to it

.customIngredientAction(IngredientFilter filter, String customId) // Custom action that has
to be registered in startup script

IngredientFilter can be either

ItemStackJS ('minecraft:dirt', Item.of('minecraft:diamond_sword').ignoreNBT(), etc)
Integer index of item in crafting table (0, 1, etc)
Object with item and/or index ({item: 'something', index: 0}, etc)

Examples:

onEvent('recipes', event => {
 	event.shapeless('9x minecraft:melon_slice', [// Craft 9 watermelon slices
		Item.of('minecraft:diamond_sword').ignoreNBT(), // Diamond sword that ignores damage
		'minecraft:melon' // Watermelon block
]).damageIngredient(Item.of('minecraft:diamond_sword').ignoreNBT()) // Damage the sword (also has to ignore
damage or only 0 damage will work)

 // Craft example block from 2 diamond swords and 2 dirt. After crafting first diamond sword is damaged (index
0) and 2nd sword is kept without changes.
	event.shaped('kubejs:example_block', [
		'SD ',
		'D S'
], {
		S: Item.of('minecraft:diamond_sword').ignoreNBT(),
		D: 'minecraft:dirt'
	}).damageIngredient(0).keepIngredient('minecraft:diamond_sword')

 // Craft example block from 2 diamond swords and 2 stones. After crafting, diamond sword is replaced with
stone sword
	event.shapeless('kubejs:example_block', [
		Item.of('minecraft:diamond_sword').ignoreNBT(),
		'minecraft:stone',
		Item.of('minecraft:diamond_sword').ignoreNBT(),
		'minecraft:stone'
]).replaceIngredient('minecraft:diamond_sword', 'minecraft:stone_sword')

 // Craft clay from sand, bone meal, dirt and water bottle. After crafting, glass bottle is left in place of water
bottle
	event.shapeless('minecraft:clay', [

		'minecraft:sand',
		'minecraft:bone_meal',
		'minecraft:dirt',
		Item.of('minecraft:potion', {Potion: "minecraft:water"})
]).replaceIngredient({item: Item.of('minecraft:potion', {Potion: "minecraft:water"})}, 'minecraft:glass_bottle')

 	// Register a customIngredientAction, and recipe that uses it
 	// This one takes the nbt from an enchanted book and applies it to a tool in the crafting table, for no cost.
 	// Thanks to Prunoideae for providing it!
 	Ingredient.registerCustomIngredientAction("apply_enchantment", (itemstack, index, inventory) => {
 let enchantment = inventory.get(inventory.find(Item.of("minecraft:enchanted_book").ignoreNBT())).nbt;
 if (itemstack.nbt == null)
 itemstack.nbt = {}
 itemstack.nbt = itemstack.nbt.merge({ Enchantments: enchantment.get("StoredEnchantments") })
 return itemstack;
 })

 	event.shapeless("minecraft:book", ["#forge:tools", Item.of("minecraft:enchanted_book").ignoreNBT()])
 .customIngredientAction("#forge:tools", "apply_enchantment")
})

Events

Item Modification
item.modification event is a startup script event that allows you to change properties of existing
items

All available properties:

int maxStackSize
int maxDamage
int burnTime
String craftingReminder
boolean fireResistant
Rarity rarity
tier = tierOptions => {

int uses
float speed
float attackDamageBonus
int level
int enchantmentValue
Ingredient repairIngredient

}
foodProperties = food => { // note: uses functions instead of a = b

hunger(int)
saturation(float)
meat(boolean)
alwaysEdible(boolean)
fastToEat(boolean)
effect(String effectId, int duration, int amplifier, float probability)
removeEffect(String effectId)

}

onEvent('item.modification', event => {
 event.modify('minecraft:ender_pearl', item => {
 item.maxStackSize = 64
 item.fireResistant = true
 })
})

Events

WorldgenAddEventJS (1.16)

Example script: (kubejs/startup_scripts/worldgen.js)

This event isn't complete yet and can only do basic things. Adding dimension-specific
features also isn't possible yet, but is planned.

onEvent('worldgen.add', event => {
 event.addLake(lake => { // Create new lake feature
 lake.block = 'minecraft:diamond_block' // Block ID (Use [] syntax for properties)
 lake.chance = 3 // Spawns every ~3 chunks
 })

 event.addOre(ore => {
 ore.block = 'minecraft:glowstone' // Block ID (Use [] syntax for properties)
 ore.spawnsIn.blacklist = false // Inverts spawn whitelist
 ore.spawnsIn.values = [// List of valid block IDs or tags that the ore can spawn in
 '#minecraft:base_stone_overworld' // Default behavior - ores spawn in all stone types
]

 ore.biomes.blacklist = true // Inverts biome whitelist
 ore.biomes.values = [// Biomes this ore can spawn in
 'minecraft:plains', // Biome ID
 '#nether' // OR #category, see list of categories below
]

 ore.clusterMinSize = 5 // Min blocks per cluster (currently ignored, will be implemented later, it's always 1)
 ore.clusterMaxSize = 9 // Max blocks per cluster
 ore.clusterCount = 30 // Clusters per chunk
 ore.minHeight = 0 // Min Y ore spawns in
 ore.maxHeight = 64 // Max Y ore spawns in
 ore.squared = true // Adds random value to X and Z between 0 and 16. Recommended to be true
 // ore.chance = 4 // Spawns the ore every ~4 chunks. You usually combine this with clusterCount = 1 for rare
ores
 })

Valid biome categories ('#category'):

taiga
extreme_hills
jungle
mesa
plains
savanna
icy
the_end
beach
forest
ocean
desert
river
swamp
mushroom
nether

You can also use ('$type' (case doesn't matter)) on Forge's BiomeDictionary:

hot
cold
wet
dry
sparse
dense
spooky
dead
lush

 event.addSpawn(spawn => { // Create new entity spawn
 spawn.category = 'creature' // Category, can be one of 'creature', 'monster', 'ambient', 'water_creature' or
'water_ambient'
 spawn.entity = 'minecraft:pig' // Entity ID
 spawn.weight = 10 // Weight
 spawn.minCount = 4 // Min entities per group
 spawn.maxCount = 4 // Max entities per group
 })
})

All values are optional. All feature types have biomes field like addOre example

etc.... see BiomeDictionary for more

This is the order vanilla worldgen happens:

1. raw_generation
2. lakes
3. local_modifications
4. underground_structures
5. surface_structures
6. strongholds
7. underground_ores
8. underground_decoration
9. vegetal_decoration

10. top_layer_modification

It's possible you may not be able to generate some things in their layer, like ores in dirt,
because dirt hasn't spawned yet. So you may have to change the layer by calling
ore.worldgenLayer = 'top_layer_modification' . But this is not recommended.

If you want to remove things, see this event.

https://github.com/MinecraftForge/MinecraftForge/blob/4011c3fb07dfedc234949b429f853349e0526470/src/main/java/net/minecraftforge/common/BiomeDictionary.java#L39-L94
https://mods.latvian.dev/books/kubejs/page/worldgenremoveeventjs

Events

Block Modification
block.modification event is a startup script event that allows you to change properties of existing
blocks

All available properties:

String material
boolean hasCollision
float destroySpeed
float explosionResistance
boolean randomlyTicking
String soundType
float friction
float speedFactor
float jumpFactor
int lightEmission
boolean requiredTool

onEvent('block.modification', event => {
 event.modify('minecraft:stone', block => {
 block.destroySpeed = 0.1
 block.hasCollision = false
 })
})

Events

JEI Integration

Sub-types

Hide Items & Fluids

Add Items & Fluids

Add Information

All JEI events are client sided and so go in the client_scripts folder

onEvent('jei.subtypes', event => {
 event.useNBT('example:item')
 event.useNBTKey('example:item', 'type')
})

onEvent('jei.hide.items', event => {
 event.hide('example:ingredient')
})

onEvent('jei.hide.fluids', event => {
 event.hide('example:fluid')
})

onEvent('jei.add.items', event => {
 event.add(Item.of('example:item', {test: 123}))
})

onEvent('jei.add.fluids', event => {
 event.add('example:fluid')
})

onEvent('jei.information', event => {
 event.add('example:ingredient', ['Line 1', 'Line 2'])
})

Hide categories

onEvent('jei.remove.categories', event => {
 console.log(event.getCategoryIds()) //log a list of all category ids to logs/kubejs/client.txt

 event.remove('create:compacting')
})

Events

WorldgenRemoveEventJS
(1.16)

If something isn't removing, you may try to remove it "manually" by first printing all features (this
will spam your console a lot, I suggest reading logs/kubejs/startup.txt) and then removing them by
ID where possible.

For more information on biomes field, see worldgen.add event page.

onEvent('worldgen.remove', event => {
 event.removeOres(ores => {
 ores.blocks = ['minecraft:coal_ore', 'minecraft:iron_ore'] // Removes coal and iron ore
 ores.biomes.values = ['minecraft:plains'] // Removes it only from plains biomes
 })

 event.removeSpawnsByID(spawns => {
 spawns.entities.values = [
 'minecraft:cow',
 'minecraft:chicken',
 'minecraft:pig',
 'minecraft:zombie'
]
 })

 event.removeSpawnsByCategory(spawns => {
 spawns.biomes.values = [
 'minecraft:plains'
]
 spawns.categories.values = [
 'monster'
]
 })
})

https://mods.latvian.dev/books/kubejs/page/worldgenaddeventjs

onEvent('worldgen.remove', event => {
 // May be one of the decoration types/levels described in worldgen.add docs
 // But ores are *most likely* to be generated in this one
 event.printFeatures('underground_ores')
})

onEvent('worldgen.remove', event => {
 event.removeFeatureById('underground_ores', 'mekanism:ore_copper')
})

Events

REI Integration
Note: REI integration only works on Fabric in 1.16. In 1.18+, it works on both Forge and
Fabric!

Hide Items

Add Items

Add Information

Yeet categories

All REI events are client sided and so go in the client_scripts folder

For 1.19+, see below (this is a temporary page!)

onEvent('rei.hide.items', event => {
 event.hide('example:ingredient')
})

onEvent('rei.add.items', event => {
 event.add(Item.of('example:item', { test: 123 })
})

onEvent('rei.information', event => {
 event.add('example:ingredient', 'Title', ['Line 1', 'Line 2'])
})

onEvent('rei.remove.categories', event => {
 console.log(event.getCategoryIds()) //log a list of all category ids to logs/kubejs/client.txt

 //event.remove works too, but yeeting is so much more fun ��
 event.yeet('create:compacting')
})

Grouping / Collapsible Entries (1.18.2+)

onEvent('rei.group', event => {
 // This event allows you to add custom entry groups to REI, which can be used to clean up the entry list
significantly.
 // As a simple example, we can add a 'Swords' group which will contain all (vanilla) swords
 // Note that each group will need an id (ResourceLocation) and a display name (Component / String)
 event.groupItems('kubejs:rei_groups/swords', 'Swords', [
 'minecraft:wooden_sword',
 'minecraft:stone_sword',
 'minecraft:iron_sword',
 'minecraft:diamond_sword',
 'minecraft:golden_sword',
 'minecraft:netherite_sword'
])

 // An easy use case for grouping stuff together could be using tags:
 // In this case, we want all the Hanging Signs and Sign Posts from Supplementaries to be grouped together
 event.groupItemsByTag('supplementaries:rei_groups/hanging_signs', 'Hanging Signs',
'supplementaries:hanging_signs')
 event.groupItemsByTag('supplementaries:rei_groups/sign_posts', 'Sign Posts', 'supplementaries:sign_posts')

 // Another example: We want all of these items to be grouped together ignoring NBT,
 // so you don't have a bajillion potions and enchanted books cluttering up REI anymore
 const useNbt = ['potion', 'enchanted_book', 'splash_potion', 'tipped_arrow', 'lingering_potion']

 useNbt.forEach(id => {
 const item = Item.of(id)
 const { namespace, path } = Utils.id(item.id)
 event.groupSameItem(`kubejs:rei_groups/${namespace}/${path}`, item.name, item)
 })

 // Items can also be grouped using anything that can be expressed as an IngredientJS,
 // including for example regular expressions or lists of ingredients
 event.groupItems('kubejs:rei_groups/spawn_eggs', 'Spawn Eggs', [
 /spawn_egg/,
 /^ars_nouveau:.*_se$/,
 'supplementaries:red_merchant_spawn_egg'
])

Hide Items

Add Items

Add Information

Yeet categories

Grouping / Collapsible Entries (1.18.2+)

 // you can even use custom predicates for grouping, like so:
 event.groupItemsIf('kubejs:rei_groups/looting_stuff', 'Stuff with Looting I', item =>
 // this would group together all items that have the Looting I enchantment on them
 item.hasEnchantment('minecraft:looting', 1)
)

 // you can also group fluids in much the same way as you can group items, for instance:
 event.groupFluidsByTag('kubejs:rei_groups/fluid_tagged_as_water', '\'Water\' (yeah right lmao)',
'minecraft:water')
})

This below code is meant for 1.19+

REIEvents.hide('item', event => {
 event.hide('example:ingredient')
})

REIEvents.add('item', event => {
 event.add(Item.of('example:item', { test: 123 })
})

REIEvents.information(event => {
 event.addItem('example:ingredient', 'Title', ['Line 1', 'Line 2'])
})

REIEvents.removeCategories(event => {
 console.log(event.getCategoryIds()) //log a list of all category ids to logs/kubejs/client.txt

 //event.remove works too, but yeeting is so much more fun ��
 event.yeet('create:compacting')
})

REIEvents.groupEntries(event => {
 // This event allows you to add custom entry groups to REI, which can be used to clean up the entry list
significantly.
 // As a simple example, we can add a 'Swords' group which will contain all (vanilla) swords
 // Note that each group will need an id (ResourceLocation) and a display name (Component / String)
 event.groupItems('kubejs:rei_groups/swords', 'Swords', [
 'minecraft:wooden_sword',
 'minecraft:stone_sword',
 'minecraft:iron_sword',
 'minecraft:diamond_sword',
 'minecraft:golden_sword',
 'minecraft:netherite_sword'
])

 // An easy use case for grouping stuff together could be using tags:
 // In this case, we want all the Hanging Signs and Sign Posts from Supplementaries to be grouped together
 event.groupItemsByTag('supplementaries:rei_groups/hanging_signs', 'Hanging Signs',
'supplementaries:hanging_signs')
 event.groupItemsByTag('supplementaries:rei_groups/sign_posts', 'Sign Posts', 'supplementaries:sign_posts')

 // Another example: We want all of these items to be grouped together ignoring NBT,
 // so you don't have a bajillion potions and enchanted books cluttering up REI anymore
 const useNbt = ['potion', 'enchanted_book', 'splash_potion', 'tipped_arrow', 'lingering_potion']

 useNbt.forEach(id => {
 const item = Item.of(id)
 const { namespace, path } = Utils.id(item.id)
 event.groupSameItem(`kubejs:rei_groups/${namespace}/${path}`, item.name, item)
 })

 // Items can also be grouped using anything that can be expressed as an IngredientJS,
 // including for example regular expressions or lists of ingredients
 event.groupItems('kubejs:rei_groups/spawn_eggs', 'Spawn Eggs', [
 /spawn_egg/,
 /^ars_nouveau:.*_se$/,
 'supplementaries:red_merchant_spawn_egg'
])

 // you can even use custom predicates for grouping, like so:
 event.groupItemsIf('kubejs:rei_groups/looting_stuff', 'Stuff with Looting I', item =>

 // this would group together all items that have the Looting I enchantment on them
 item.hasEnchantment('minecraft:looting', 1)
)

 // you can also group fluids in much the same way as you can group items, for instance:
 event.groupFluidsByTag('kubejs:rei_groups/fluid_tagged_as_water', '\'Water\' (yeah right lmao)',
'minecraft:water')
})

Events

ItemTooltipEventJS
A client event that allows adding tooltips to any item!

onEvent('item.tooltip', tooltip => {
 // Add tooltip to all of these items
 tooltip.add(['quark:backpack', 'quark:magnet', 'quark:crate'], 'Added by Quark Oddities')
 // You can also use any ingredient except #tag (due to tags loading much later than client scripts)
 tooltip.add(/refinedstorage:red_/, 'Can be any color')
 // Multiple lines with an array []. You can also escape ' by using other type of quotation marks
 tooltip.add('thermal:latex_bucket', ["Not equivalent to Industrial Foregoing's Latex", 'Line 2 text would go
here'])
 // Use some data from the client to decorate this tooltip. name returns a component so we just append that.
 tooltip.add('minecraft:skeleton_skull', Text.of('This used to be ').append(Client.player.name).append("'s head"))

 tooltip.addAdvanced('thermal:latex_bucket', (item, advanced, text) => {
 text.add(0, Text.of('Hello')) // Adds text in first line, pushing the items name down a line. If you want the line
below the item name, the index must be 1
 })

 tooltip.addAdvanced('minecraft:beacon', (item, advanced, text) => {
 // shift, alt and ctrl are all keys you can check!
 if (!tooltip.shift) {
 text.add(1, [Text.of('Hold ').gold(), Text.of('Shift ').yellow(), Text.of('to see more info.').gold()])
 } else {
 text.add(1, Text.green('Gives positive effects to players in a range').bold(true))
 text.add(2, Text.red('Requires a base built out of precious metals or gems to function!'))
 text.add(3, [Text.white('Iron, '), Text.aqua('Diamonds, '), Text.gold('Gold '), Text.white('or even '),
Text.green('Emeralds '), Text.white('are valid base blocks!')])
 }
 })

 // Neat utility to display NBT in the tooltip
 tooltip.addAdvanced(Ingredient.all, (item, advanced, text) => {
 if (tooltip.alt && item.nbt) {

 text.add(Text.of('NBT: ').append(Text.prettyPrintNbt(item.nbt)))
 }
 })

 // Show the name of the player who owns the skull in a skulls tooltip
 tooltip.addAdvanced('minecraft:player_head', (item, advanced, text) => {
 let playername = item.nbt?.SkullOwner?.Name
 if (playername) {
 text.add(Text.red(`The head of ${playername}`))
 }
 })
})

Events

Worldgen Events

General Notes
Biome Filters:
Biome filters work similarly to recipe filters, and can be used to create complex and exact filters to
fine tune exactly where your features may and may not spawn in the world. They are used for the
biomes field of a feature and may look something like this:

These following examples will only work on 1.18+! If you need examples for 1.16, you can
look here if you want to add new features to world generation and here if you want to
remove features from it.

onEvent('worldgen.add', event => {
 event.addOre(ore => {
 // let's look at all of the 'simple' filters first
 ore.biomes = 'minecraft:plains' 		// only spawn in exactly this biome
 ore.biomes = /^minecraft:.*/			// spawn in all biomes that match the given pattern (here: anything that starts
with minecraft:)
 ore.biomes = '#minecraft:is_forest' 	// [1.19+] spawn in all biomes tagged as 'minecraft:is_forest'
 ore.biomes = '^nether' 				// [1.18 only!] spawn in all biomes in the 'nether' category (see Biome Categories)
 ore.biomes = '$hot'					// [Forge 1.18 only!] spawn in all biomes that have the 'hot' biome type (see Biome
Dictionary)
 // filters can be arbitrarily combined using AND, OR and NOT logic
 ore.biomes = {}						// empty AND filter, always true
 ore.biomes = []						// empty OR filter, also always true
 ore.biomes = {
 not: 'minecraft:ocean'				// spawn in all biomes that are NOT 'minecaraft:ocean'
 }
 // since AND filters are expressed as maps and expect string keys,
 // all of the 'primitive' filters can also be expressed as such
 ore.biomes = {					// see above for an explanation of these filters
 id: 'minecraft:plains',

https://mods.latvian.dev/books/kubejs-legacy/page/worldgenaddeventjs-%28116%29
https://mods.latvian.dev/books/kubejs-legacy/page/worldgenremoveeventjs-%28116%29

Rule Tests and Targets:
In 1.18, Minecraft worldgen has changed to a "target"-based replacement system, meaning you
can specify specific blocks to be replaced with specific other blocks within the same feature
configuration. (This is used to replace stone with the normal ore and deepslate with the deepslate
ore variant, for example).

Each target gets a "rule test" as input (something that checks if a given block state should be
replaced or not) and produces a specific output block state. On the KubeJS script side, both of these
concepts are expressed as the same class: BlockStatePredicate.

Syntax-wise, BlockStatePredicate is pretty similar to biome filters as they too can be combined
using AND or OR filters (which is why we will not be repeating that step here), and can be used to
match one of three different things fundamentally:

1. Blocks (these are simply parsed as strings, so for example "minecraft:stone" to match
Stone)

2. Block States (these are parsed as the block id followed by an array of properties, so you
would use something like "minecraft:furnace[lit=true]" to match only furnace blocks that are
active (lit). You can use F3 to figure out a block's properties, as well as possible values
through using the debug stick.

 id: /^minecraft:.*/,			// regex (also technically an id filter)
 tag: '#minecraft:is_forest',
 category: '^nether',
 biome_type: '$hot',
 }
 // note all of the above syntax may be mixed and matched individually
 // for example, this will spawn the feature in any biome that is
 // either plains, or a hot biome that is not in the nether or savanna categories
 ore.biomes = [
 'minecraft:plains', {
 biome_type: '$hot',
 not: [
 '#nether',
 { category: 'savanna' }
]
 },
]
 })
})

3. Block Tags (as you might expect, these are parsed in the "familiar" tag syntax, so you
could for example use "#minecraft:base_stone_overworld" to match all types of stone that can
be found generating in the ground in the overworld. Note that these are block tags, not
item tags, so they may (and probably will) be different! (F3 is your friend!)

More examples on how targets work can be found in the example script down below.

Height Providers:
Another system that may appear a bit confusing at first is the system of "height providers", which
are used to determine at what Y level a given ore should spawn and with what frequency. Used in
tandem with this feature are the so-called "vertical anchors", which may be used to get the height
of something relative to a specific anchor point (for example the top or bottom of the world)

In KubeJS, this system has been simplified a bit to make it easier to use for script developers: To
use the two most common types of ore placement, uniform (the feature has the same chance to
spawn anywhere in between the two anchors) and triangle (the feature is more likely to spawn in
the center of the two anchors than it is to spawn further outwards), you can use the methods
uniformHeight and traingleHeight in AddOreProperties, respectively. Vertical anchors have also been
simplified, as you can use the aboveBottom / belowTop helper methods in AddOreProperties, or, in
newer KubeJS versions, the builtin class wrapper for VerticalAnchor (Note that the former has been
deprecated in favour of the latter), as well as if you want to specify absolute heights as simple
numbers, instead.

Once again, see the example script for more information!

(1.18 only!) Biome Categories:
Biome categories are a vanilla system that can be used to roughly sort biomes into predefined
categories, which are noted below. Note that other mods may add more categories through
extending the enum, however since there is no way for us to know this we will only provide you
with the vanilla IDs here:

taiga
extreme_hills

You can also use regular expressions with block filters, so /^mekanism:.*_ore$/ would match
any block from Mekanism whose id ends with "_ore". Keep in mind this will not match block
state properties!

When a RuleTest is required instead of a BlockStatePredicate, you can also supply that rule
test directly in the form of a JavaScript object (it will then be parsed the same as vanilla
would parse JSON or NBT objects). This can be useful if you want rule tests that have a
random chance to match, for example!

jungle
mesa
plains
savanna
icy
the_end
beach
forest
ocean
desert
river
swamp
mushroom
nether

(1.18 and Forge only!) Biome Dictionary:
Much like Vanilla biome categories, Forge uses a "Biome Dictionary" to sort biomes based on their
properties. Note that this system is designed to be extended by mods, so there is no way for us to
give a complete list of all categories to you, however some of the ones you might commonly find
yourself using are listed here:

hot
cold
wet
dry
sparse
dense
spooky
dead
lush
etc.... see BiomeDictionary for more

Example script: (kubejs/startup_scripts/worldgen.js)

In 1.19, both of these systems have been removed with no replacement in favour of
biome tags!

onEvent('worldgen.add', event => {
 // use the anchors helper from the event (NOTE: this requires newer versions of KubeJS)
 // if you are using an older version of KubeJS, you can use the methods in the ore properties class
 const { anchors } = event

https://github.com/MinecraftForge/MinecraftForge/blob/4011c3fb07dfedc234949b429f853349e0526470/src/main/java/net/minecraftforge/common/BiomeDictionary.java#L39-L94

 event.addOre(ore => {
 ore.id = 'kubejs:glowstone_test_lmao' // (optional, but recommended) custom id for the feature
 ore.biomes = {
 not: '^savanna' // biome filter, see above (technically also optional)
 }

 // examples on how to use targets
 ore.addTarget('#minecraft:stone_ore_replaceables', 'minecraft:glowstone') // replace anything in the vanilla
stone_ore_replaceables tag with Glowstone
 ore.addTarget('minecraft:deepslate', 'minecraft:nether_wart_block') // replace Deepslate with Nether Wart
Blocks
 ore.addTarget([
 'minecraft:gravel', // replace gravel...
 /minecraft:(.*)_dirt/ // or any kind of dirt (including coarse, rooted, etc.)...
], 'minecraft:tnt') // with TNT (trust me, it'll be funny)

 ore.count([15, 50]) // generate between 15 and 50 veins (chosen at random), you could use a single
number here for a fixed amount of blocks
 .squared() // randomly spreads the ores out across the chunk, instead of generating them in a
column
 .triangleHeight(// generate the ore with a triangular distribution, this means it will be more likely to be
placed closer to the center of the anchors
 anchors.aboveBottom(32), // the lower bound should be 32 blocks above the bottom of the world, so in
this case, Y = -32 since minY = -64
 anchors.absolute(96)	 // the upper bound, meanwhile is set to be just exactly at Y = 96
)								 // in total, the ore can be found between Y levels -32 and 96, and will be most likely at Y = (96 + -
32) / 2 = 32

 // more, optional parameters (default values are shown here)
 ore.size = 9 // max. vein size
 ore.noSurface = 0.5 // chance to discard if the ore would be exposed to air
 ore.worldgenLayer = 'underground_ores' // what generation step the ores should be generated in (see below)
 ore.chance = 0							// if != 0 and count is unset, the ore has a 1/n chance to generate per chunk
 })

 // oh yeah, and did I mention lakes exist, too?
 // (for now at least, Vanilla is likely to remove them in the future)
 event.addLake(lake => {
 lake.id = 'kubejs:funny_lake' // BlockStatePredicate
 lake.chance = 4

Generation Steps
1. raw_generation
2. lakes
3. local_modifications
4. underground_structures
5. surface_structures
6. strongholds
7. underground_ores
8. underground_decoration

 lake.fluid = 'minecraft:lava'
 lake.barrier = 'minecraft:diamond_block'
 })
})

onEvent('worldgen.remove', event => {
 console.info('HELP')
 //console.debugEnabled = true;

 // print all features for a given biome filter
 event.printFeatures('', 'minecraft:plains')

 event.removeOres(props => {
 // much like ADDING ores, this supports filtering by worldgen layer...
 props.worldgenLayer = 'underground_ores'
 // ...and by biome
 props.biomes = [
 { category: 'icy' },
 { category: 'savanna' },
 { category: 'mesa' }
]

 // BlockStatePredicate to remove iron and copper ores from the given biomes
 // Note tags may NOT be used here, unfortunately...
 props.blocks = ['minecraft:iron_ore', 'minecraft:copper_ore']
 })

 // remove features by their id (first argument is a generation step)
 event.removeFeatureById('underground_ores', ['minecraft:ore_coal_upper', 'minecraft:ore_coal_lower'])
})

9. vegetal_decoration
10. top_layer_modification

It's possible you may not be able to generate some things in their layer, like ores in dirt,
because dirt hasn't spawned yet. So you may have to change the layer to one of the above
generation steps by calling ore.worldgenLayer = 'top_layer_modification' . This is, however, not
recommended.

Events

Chat Event
This script is peak of human evolution. Whenever someone says "Creeper" in chat, it replies with
"Aw man".

Another example, cancelling the chat event. No need to schedule anything now, because player's
message wont be printed,

onEvent('player.chat', (event) => {
 // Check if message equals creeper, ignoring case
 if (event.message.trim().equalsIgnoreCase('creeper')) {
 // Schedule task in 1 tick, because if you reply immidiently, it will print before player's message
 event.server.scheduleInTicks(1, event.server, (callback) => {
 // Tell everyone Aw man, colored green. Callback data is the server
 callback.data.tell(Text.green('Aw man'))
 })
 }
})

onEvent('player.chat', (event) => {
 // Check if message equals creeper, ignoring case
 if (event.message.startsWith('!some_command')) {
 event.player.tell('Hi!')
 event.cancel()
 }
})

Events

Custom Fluids
Supported by Forge on all versions, and Fabric on 1.18.2+

// Startup script
onEvent('fluid.registry', event => {
 // These first examples are 1.16.5 and 1.18.2 syntax

 // Basic "thick" (looks like lava) fluid with red tint
 event.create('thick_fluid')
 .thickTexture(0xFF0000)
 .bucketColor(0xFF0000)
 .displayName('Thick Fluid')

 // Basic "thin" (looks like water) fluid with cyan tint, has no bucket and is not placeable
 event.create('thick_fluid')
 .thinTexture(0xFF0000)
 .bucketColor(0x00FFFF)
 .displayName('Thin Fluid')
 	.noBucket() // both these methods are 1.18.2+ only
 	.noBlock()

 // Fluid with custom textures
 event.create('strawberry_cream')
 	.displayName('Strawberry Cream')
 .stillTexture('kubejs:block/strawberry_still')
 .flowingTexture('kubejs:block/strawberry_flow')
 .bucketColor(0xFF33FF)

 // For 1.18.1 the syntax is slightly different
 event.create('thick_fluid', fluid => {
 fluid.textureThick(0xFF0000) // the texture method names are different in 1.18.1 and below, textureXyz
instead of xyzTexture
 fluid.bucketColor(0xFF0000)
 fluid.displayName('Thick Fluid')
 })

Methods that you can use after the event.create('name')

displayName(name)
color(color)
bucketColor(color)
builtinTextures()

same as thinTexture(0xFFFFFF)
stillTexture(path)

path is the path to txture is for example maybe "minecraft:block/sand"
this texture is recomended to be 16x16, or if animated with a mcmeta file then
16x48 for 3 frames or 16x80 for 5 or 16x240 for 15
Frame counts of 3, 5, 15, 6, 10, or 30 will make your life easier, because the flowing
animation need to be a multiple of 15 to look good

flowingTexture(path)
path is the path to texture is for example maybe "minecraft:block/sand"
this texture is recommended to be 32x480 and animated with a mcmeta file
each frame is recommended to be 32x32 (recommended to be the same 16x16
texture tiled)
then each of these frames are shifted one pixel vertically from the previous, so it
looks like its moving
If you are going to be making your own flowing fluid texture it is highly
recommended to not make these by hand (It is hours of suffering), and instead write
a some program, or setup something with blender nodes to make it.

noBucket()
noBlock()
gaseous()

It is now a gas
rarity(value)

Can be:
"common"
"uncommon"
"rare"
"epic"

The following can also be used but have no effect unless a mod adds a purpose:

luminosity(value)
default 0

density(value)
default 1000

})

In 1.18.1, 1.17 and 1.16 the texture method names are swapped, so textureStill and
textureThin instead of stillTexture and thinTexture

temperature(value)
default 300

viscosity(value)
default 1000

You can use .bucketItem to get the bucket item builder.

If you one want to use it then you can place it at the end of the other methods then use the its
methods instead.

.bucketItem
Any method that you can use on an item builder might work

There is a good chance the following does not work at all

// notice this script has not been tested
onEvent('fluid.registry', event => {
 event.create('taco_suace')
 .thickTexture(0xFF0000)
 .bucketColor(0xFF0000)
 .bucketItem
 .group("food")
})

Some amount of the methods in these builders will not work or cause problems

https://mods.latvian.dev/books/kubejs-legacy/page/custom-items

Events

Command Registry

Example:

This page is unfinished and only provides basic information

The following code has not been completely tested on 1.18 and not at all on 1.16

onEvent("command.registry", event => {//command registry event
 const { commands: Commands, arguments: Arguments} = event;
 event.register(//register a new command
 Commands.literal("myCommand")//the command is called myCommand
		.requires(src => src.hasPermission(2))//2 is op. This line is optional, but you can also instead of just one value,
wrap it in {}s and use return to write a more complex requirement checks
		.then(Commands.argument('arg1', Arguments.STRING.create(event))//takes argument string called arg1. You
can have as many (or none) as you want.
			.then(Commands.argument('arg2', Arguments.FLOAT.create(event))//takes argument float called arg2. The other
type you can use can be found with ProbeJS
				.executes(ctx => {//run the command
					const arg1 = Arguments.STRING.getResult(ctx, "arg1");//get recipe
					const arg2 = Arguments.FLOAT.getResult(ctx, "arg2");//get the value
 //your code goes here
					if(arg1 == "example")
 	return 0//return 0 means command did not work
 let level = ctx.source.level.asKJS()
 let position = ctx.source.position
 //hurt entities in a around a area of where the command was run
 let i = 0
 level.getEntitiesWithin(AABB.of(position.x()-2,position.y()-2,position.z()-
2,position.x()+2,position.y()+2,position.z()+2)).forEach(entity => {
 	if (entity.living) {
 entity.attack(arg2)
 i++

 if (entity.type == "minecraft:player") entity.tell(arg1) //tell players that got hurt the message
that is arg1
 }
 })
					return i // always return something
				})
)// every then requires a ')' so dont forget them
)//but requires does not
)
})

Events

Datapack Load Events
You can load json datapack files programmatically!

resourceLocation could be minecraft:loot_tables/entities/villager.json

json could be for example:

onEvent('server.datapack.first', event => {
		event.addJson(name, json)
})

{
 type: "entity",
 pools: [
 {
 rolls: 2,
 bonus_rolls: 1,
 entries: [
 {
 type: "item",
 weight: 3,
 name: "minecraft:emerald"
 },
 {
 type: "empty",
 weight: 2
 }
]
 }
]
}

Note: Practically everything in vanilla has a way better to programmatically load it, so it is
recommended to use this mostly for loading thing for other mods

There are different timing that you can make the file get loaded too!

server.datapack.first
server.datapack.last

This event is useful, because instead of needing to write multiple json files, you can write one then
change the values passed to it.

Example
Adds multiple advancements for using different items that reward experience:

In the custom machinery mod, the packdev needs to make a massive json file for each machine they
wish to create. This script will make 16 machines, and is shorter then even a single on of the
original json files would have been.

onEvent('server.datapack.first', event => {
 	const items = ['bow', 'golden_hoe', 'flint_and_steel', 'spyglass']
 items.forEach(item => {
		event.addJson(`kubejs:advancements/${item}`, {
			criteria: {
				requirement: {
					trigger: "minecraft:using_item",
					conditions: {
						item: {
							items: [`minecraft:${item}`]
						}
					}
				}
			},
			rewards: {
				experience: 20
			}
		})
	})
})

onEvent('server.datapack.first', event => {
	let json
	//create 16 custom machines with 6 inputs and 1 output
	for (let machineNumber = 0; machineNumber < 16; machineNumber++) {

		json = {
			name: {
				text: `${machineNumber}`
			},
			appearance: {},
			components: [
				{
 "type": "custommachinery:item",
					"id": "out",
					"mode": "output"
				}
],
			gui: [
				{
					"type": "custommachinery:progress",
					"x": 70,
					"y": 41,
					"width": 18,
					"height": 18
				},{
					"type": "custommachinery:slot",
					"x": 88,
					"y": 41,
					"id": "out"
				},{
					"type": "custommachinery:text",
					"text": `Machine ${machineNumber}`,//string builder to make the name match the machine number
					"x":16,
					"y":16
				},{
					"type": "custommachinery:texture",
					"x": 0,
					"y": 0,
					"texture": "custommachinery:textures/gui/base_background.png",
					"priority": 1000
				},{
					"type": "custommachinery:player_inventory",
					"x": 16,
					"y": 68
				}

]
		}

		//add the input slots and corrasponding componets
		let slotNumber = 0
 	const xValues = [16,34,52]
 const yValues = [32,50]
		xValues.forEach(x => {
			yValues.forEach(y => {

				json.components.push({
					"type": "custommachinery:item",
					"id": `input${slotNumber}`,
					"mode": "input"
				})

				json.gui.push({
					"type": "custommachinery:slot",
					"x": x,
					"y": y,
					"id": `input${slotNumber}`
				})

				slotNumber++
			})
		})

		//add the json
		event.addJson(`kubejs:machines/${machineNumber}`,json)
	}
})

Examples
Example scripts for various things you can do with KubeJS

Examples

FTB Quests Integration
onEvent('ftbquests.custom_task.75381f79', event => {
 log.info('Custom task!')
 event.checkTimer = 20
 event.check = (task, player) => {
 if (player.world.daytime && player.world.raining) {
 task.progress++
 }
 }
})

onEvent('ftbquests.custom_reward.e4f76908', event => {
 log.info('Custom reward!')
 event.player.tell('Hello!')
})

// specific object completion
onEvent('ftbquests.completed.d4f36905', event => {
 if (event.player) {
 event.notifiedPlayers.tell(Text.of(`${event.player.name} completed... something!`).green())
 }
})

// generic 'quest' object completion. Note: There isnt actually a way to get reliable title on server side, so dont
use event.object.title
onEvent('ftbquests.completed', event => {
 if (event.player && event.object.objectType.id === 'quest') {
 event.notifiedPlayers.tell(Text.of(`${event.player.name} completed a quest!`).blue())
 }
})

// object with tag 'ding' completion
onEvent('ftbquests.completed.ding', event => {
 event.onlineMembers.playSound('entity.experience_orb.pickup')

})

onEvent('entity.death', event => {
 if(event.server
 && event.source.actual
 && event.source.actual.player
 && event.source.actual.mainHandItem.id === 'minecraft:wooden_sword'
 && event.entity.type === 'minecraft:zombie') {
 event.source.actual.data.ftbquests.addProgress('12345678', 1)
 }
})

Examples

Reflection / Java access
Very limited reflection is possible, but is not recommended. Use it in cases when KubeJS doesnt
support something.

In 1.18.2+ internal Minecraft classes are remapped to MojMaps at runtime, so you don't have to
use obfuscated names if accessing internal Minecraft fields and methods.

An example of adding a block with a custom material, built using reflection to get the MaterialJS
class, then make a new instance of that with amethyst sounds and material properties from
internal Minecraft classes.

This does come at a cost, it takes 1-2 seconds to load this script, instead of the normal
milliseconds. You should import your classes at the top of the script, instead of in an event,
especially if the event gets triggered more than once.

// Startup script, 1.18.2
const MaterialJS = java("dev.latvian.mods.kubejs.block.MaterialJS")
const Material = java('net.minecraft.world.level.material.Material')
const SoundType = java('net.minecraft.world.level.block.SoundType')

amethystMaterial = new MaterialJS('amethyst', Material.AMETHYST, SoundType.AMETHYST) // f_164531_ and
f_154654_ are the respective obfuscated names of these fields, for older versions

//This builder uses 1.18.2 syntax, it will not work in 1.16 or 1.18.1
onEvent('block.registry', event => {
	event.create('amethyst_slab', 'slab')
		.material(amethystMaterial)// Use the new MaterialJS instance we created as the material
		.tagBlock('minecraft:crystal_sound_blocks')
		.tagBlock('minecraft:mineable/pickaxe')
		.requiresTool(true)
		.texture('texture', 'minecraft:block/amethyst_block')
})

Examples

Painter API
About
Painter API allows you to draw things on the screen, both from server and directly from client. This
can allow you to create widgets from server side or effects on screen or in world from client side.

Currently it doesn't support any input, but in future, in-game menus or even GUIs similar to Source
engine ones will be supported.

Paintable objects are created from NBT/Json objects and all have an id. If id isn't provided, a
random one will be generated. Objects x and z are absolute positions based on screen, but you can
align elements in one of the corners of screen. You can bulk add multiple objects in one json object.
All properties are optional, but obviously some you should almost always override like size and
position for rectangles.

paint({...}) is based on upsert principle - if object doesn't exist it will create it (if the object also
contains valid type), otherwise, update existing:

event.player.paint({example: {type: 'rectangle', x: 10, y: 10, w: 20, h: 20}}) - New rectangle is
created
event.player.paint({example: {x: 50}}) - Updates previous rectangle with partial data

You can bulk update/create multiple things in same object:

event.player.paint({a: {x: 10}, b: {x: 30}, c: {type: 'rectangle', x: 10}})

You can remove object with remove: true, bulk remove multiple objects or remove all objects:

event.player.paint({a: {remove: true}})
event.player.paint({a: {remove: true}, b: {remove: true}})
event.player.paint({'*': {remove: true}})

These methods have command alternatives:

/kubejs painter @p {example: {type: 'rectangle', x: 10, y: 10, w: 20, h: 20}}

If the object is re-occuring, it's recommended to create objects at login with all of its static
properties and visible: false , then update it later to unhide it. Painter objects will be cleared when
players leave world/server, if its persistent, then it must be re-added at login every time.

Currently available objects

Underlined objects are not something you can create

Root
(available for all objects)

Boolean visible
Float x
Float y
Float z
Float w
Float h
Enum alignX (one of 'left', 'center', 'right')
Enum alignY (one of 'top', 'center', 'bottom')
Enum draw (one of 'ingame', 'gui', 'always')
Float moveX
Float moveY
Float expandW
Float expandH

rectangle
Color color
String texture
Float u0
Float v0
Float u1
Float v1

gradient
Color color
Color colorT
Color colorB
Color colorL
Color colorR
Color colorTL
Color colorTR
Color colorBL
Color colorBR
String texture
Float u0
Float v0
Float u1
Float v1

text
Text text | Text[] textLines
Boolean shadow
Float scale
Color color
Boolean centered
Float lineSpacing

item
ItemStack item (supports either 'itemid' or vanilla {id: 'item', Count: 4, tag: {...}} NBT
syntax)
Boolean overlay
String customText
Float rotation

Properties
Unit is a Rhino Unit. It can be a number, boolean, color, equation. Every Float, Int, Boolean
and Color are also Units, so you can use equations on them.
Int is a int32 number, any whole value, e.g. 40 .
Float is float64 floating point number, e.g 2.35 .
String is a string, e.g. 'example' . Textures usually need resource location
'namespace:path/to/texture.png' .
Color can be either 0xRRGGBB , '#RRGGBB' , '#AARRGGBB', e.g. '#58AD5B' or chat colors
'red' , 'dark_aqua' , etc. RGBA color(Float, Float, Float, Float) is also supported where Float is
any number between 0.0 and 1.0 (supports Units).
Text can be a string 'Example' or Text.of('Red and italic string example').red().italic() etc
formatted string.

Available Unit variables
$screenW - Screen width
$screenH - Screen height
$delta - Render delta
$mouseX - Mouse X position
$mouseY - Mouse Y position

Available Unit constants
true - boolean true value, equal to 1.0
false - boolean false value, equal to 0.0
PI - number equal to 3.14159265358979323846
HALF_PI - number equal to 1.57079632679
TWO_PI - number equal to 6.28318530718

https://mods.latvian.dev/books/kubejs/page/units

E - number equal to 2.7182818284590452354

Examples
onEvent('player.logged_in', event => {
	event.player.paint({
		example_rectangle: {
			type: 'rectangle',
			x: 10,
			y: 10,
			w: 50,
			h: 20,
			color: '#00FF00',
			draw: 'always'
		},
		last_message: {
			type: 'text',
			text: 'No last message',
			scale: 1.5,
			x: -4,
			y: -4,
			alignX: 'right',
			alignY: 'bottom',
			draw: 'always'
		}
	})
})

onEvent('player.chat', event => {
	// Updates example_rectangle x value and last_message text value to last message + contents from event
	event.player.paint({example_rectangle: {x: '(sin((time() * 1.1)) * (($screenW - 32) / 2))', w: 32, h: 32, alignX:
'center', texture: 'kubejs:textures/item/diamond_ore.png'}})
	event.player.paint({last_message: {text: `Last message: ${event.message}`}})
	// Bulk update, this is the same code as 2 lines above, you can use whichever you like better
	// event.player.paint({example_rectangle: {x: 120}, last_message: {text: `Last message:
${event.message}`}})
	event.player.paint({lava: {type: 'atlas_texture', texture: 'minecraft:block/lava_flow'}})
})

Image not found or type unknown

Examples

Units
This page describes all functions and operations available for units

Usage
Most basic unit is plain number, such as '1' or '4.5' .

You can use variables with $ like '$example' .

Each function requires name parenthesis and comma separated arguments e.g. 'min(PI, $example)' .

You can combine as many as you want, e.g. 'min(PI, 10 + $example)' .

You can do pretty complex infix, e.g. 'atan2($mouseY, $mouseX) - HALF_PI - HALF_PI / 2' .

Constants
true - boolean true value, equal to 1.0
false - boolean false value, equal to 0.0
PI - number equal to 3.14159265358979323846
HALF_PI - number equal to 1.57079632679
TWO_PI - number equal to 6.28318530718
E - number equal to 2.7182818284590452354

Operations
cond ? a : b = TERNARY, if cond then a, else b
-a = NEGATE
a + b = SUM
a - b = SUB
a * b = MUL
a / b = DIV
a % b = MOD
a ** b = POW
a & b = BIT AND
a | b = BIT OR
a ^ b = BIT/BOOL XOR
~a = BIT NOT
!a = BOOL NOT
a << b = SHIFT LEFT

a >> b = SHIFT RIGHT
a == b = EQUALS
a != b = NOT EQUALS
a > b = GREATER THAN
a < b = LESS THAN
a >= b = GREATER OR EQUAL THAN
a <= b = LESS OR EQUAL THAN

Functions
random()
time()
roundTime()
min(a, b)
max(a, b)
pow(a, b)
abs(a)
sin(a)
cos(a)
tan(a)
atan(a)
atan2(y, x)
deg(a)
rad(a)
log(a)
log10(a)
log1p(a)
sqrt(a)
sq(a)
floor(a)
ceil(a)
if(statement, trueUnit, falseUnit)

Examples

Network Packets
This script shows how to use network packets:

// Listen to a player event, in this case item right-click
// This goes in either server or client script, depending on which side you want to send the data packet to
onEvent('item.right_click', event => {
 // Check if item was right-clicked on client or server side
 if (event.server) {
 // Send data {test: 123} to channel "test_channel_1". Channel ID can be any string, but it's recommended to
keep it to snake_case [a-z_0-9].
 // Receiving side will be client (because its sent from server).
 event.player.sendData('test_channel_1', { test: 123 })
 } else {
 // It's not required to use a different channel ID, but it's recommended.
 // Receiving side will be server (because its sent from client).
 event.player.sendData('test_channel_2', { test: 456 })
 }
})

// Listen to event that gets fired when network packet is received from server.
// This goes in a client script
onEvent('player.data_from_server.test_channel_1', event => {
 log.info(event.data.test) // Prints 123
})

// Listen to event that gets fired when network packet is received from client.
// This goes in a server script
onEvent('player.data_from_client.test_channel_2', event => {
 log.info(event.data.test) // Prints 456
})

Examples

Starting Items
This server script adds items on first time player joins, checking stages. GameStages mod is not
required

// Listen to player login event
onEvent('player.logged_in', event => {
 // Check if player doesn't have "starting_items" stage yet
 if (!event.player.stages.has('starting_items')) {
 // Add the stage
 event.player.stages.add('starting_items')
 // Give some items to player
 event.player.give('minecraft:stone_sword')
 event.player.give(Item.of('minecraft:stone_pickaxe', "{Damage: 10}"))
 event.player.give('30x minecraft:apple')
 }
})

Examples

FTB Utilities Rank
Promotions
With this script you can have FTB Utilities roles that change over time.

Is for 1.12 only. Requires FTB Utilities.

3 example roles in ranks.txt:

events.listen('player.tick', function (event) {
 // This check happens every 20 ticks, a.k.a every second
 if (event.player.server && event.player.ticksExisted % 20 === 0) {
 var rank = event.player.data.ftbutilities.rank
 events.post('test_event', {testValue: rank.id})
 var newRank = ftbutilities.getRank(rank.getPermission('promotion.next'))

 if (newRank) {
 var timePlayed = event.player.stats.get('stat.playOneMinute') / 20 // Seconds player has been on server
 var timeRequired = newRank.getPermissionValue('promotion.timer').getInt()

 if (timeRequired > 0 && timePlayed >= timeRequired && rank.addParent(newRank)) {
 if (!events.postCancellable('ftbutilities.rank.promoted.' + newRank.id, {'player': event.player, 'rank':
newRank})) {
 event.player.tell('You have been promoted to ' + newRank.getPermission('promotion.name') + '!')
 }
 ftbutilities.saveRanks()
 }
 }
 }
})

// When player gets promoted to 'trusted' rank, give them gold ingot (uncomment the line)
events.listen('ftbutilities.rank.promoted.trusted', function (event) {
 // event.data.player.give('minecraft:gold_ingot')
})

After 5 seconds of play time, player will be promoted to newcomer.
After 15 seconds (or 10 since previous role) they will be promoted to regular.
After 30 seconds (or 15 since previous role) they will be promoted to trusted, etc.

[player]
power: 1
default_player_rank: true
promotion.name: Player
promotion.next: newcomer
promotion.timer: 5
command.ftbutilities.rtp: false
command.ftbutilities.home: false

[newcomer]
power: 5
promotion.name: Newcomer
promotion.next: regular
promotion.timer: 15
ftbutilities.chat.name_format: <&aNewcomer &r{name}>
command.ftbutilities.rtp: true

[regular]
power: 10
promotion.name: Regular
promotion.next: trusted
promotion.timer: 30
ftbutilities.chat.name_format: <&9Regular &r{name}>
command.ftbutilities.home: true

Examples

Clearlag 1.12
This script removes all items from world every 30 minutes. Only works in 1.12.

// Create item whitelist filter that won't be deleted with clearlag
var whitelist = Ingredient.matchAny([
 'minecraft:diamond', // Adds diamond to whitelist
 'minecraft:gold_ingot',
 '@tinkersconstruct', // Adds all items from tinkerscontruct to whitelist
 'minecraft:emerald'
])

// Create variable for last clearlag result
var lastClearLagResult = Utils.newList()
// Create variable for total number of items
var lastTotalClearLagResult = Utils.newCountingMap()

// Create new function that clears lag
var clearLag = server => {
 // Get a list of all entities on server with filter that only returns items
 var itemList = server.getEntities('@e[type=item]')
 // Create new local map for item counters
 var lastResult = Utils.newCountingMap()
 // Clear old result lists
 lastClearLagResult.clear()
 lastTotalClearLagResult.clear()
 // Iterate over each entity in itemList and add item counters
 itemList.forEach(entity => {
 if (!whitelist.test(entity.item)) {
 // Get the name of item
 var key = entity.item.name
 // Add to entity count
 lastResult.add(key, 1)
 // Add to total item count
 lastTotalClearLagResult.add(key, entity.item.count)
 // Kill the item entity

 entity.kill()
 }
 })

 // Update and sort last result list
 lastClearLagResult.addAll(lastResult.entries)
 lastClearLagResult.sort(null)

 // Tell everyone how many items will be removed
 server.tell([
 Text.lightPurple('[ClearLag]'),
 ' Removed ',
 lastTotalClearLagResult.totalCount,
 ' items. ',
 Text.yellow('Click here').click('command:/clearlagresults'),
 ' for results.'
])
}

// Listen for server load event
events.listen('server.load', event => {
 // Log message in console
 event.server.tell([Text.lightPurple('[ClearLag]'), ' Timer started, clearing lag in 30 minutes!'])
 // Schedule new task in 30 minutes
 event.server.schedule(MINUTE * 30, event.server, callback => {
 // Tell everyone on server that items will be removed
 callback.data.tell([Text.lightPurple('[ClearLag]'), ' Removing all items on ground in one minute!'])
 // Schedule a subtask that will clear items in one minute
 callback.data.schedule(MINUTE, callback.data, callback2 => {
 clearLag(callback2.data)
 })
 // Re-schedule this task for another 30 minutes (endless loop)
 callback.reschedule()
 })
})

// Doesnt work in 1.16+!
// Register commands
events.listen('command.registry', event => {
 // Register new OP command /clearlag, that instantly runs clearlag

 event
 .create('clearlag')
 .op()
 .execute(function (sender, args) {
 clearLag(sender.server)
 })
 .add()

 // Register new non-OP command /clearlagresults, that displays stats of all removed items from previous
/clearlag
 event
 .create('clearlagresults')
 .execute((sender, args) => {
 sender.tell([Text.lightPurple('[ClearLag]'), ' Last clearlag results:'])

 lastClearLagResult.forEach(entry => {
 var total = lastTotalClearLagResult.get(entry.key)

 if (entry.value == total) {
 sender.tell([Text.gold(entry.key), ': ', Text.red(entry.value)])
 } else {
 sender.tell([Text.gold(entry.key), ': ', Text.red(entry.value), ' entities, ', Text.red(total), ' total'])
 }
 })
 })
 .add()
})

Examples

Scheduled Server Events
At server load, you can schedule anything to happen at later time. Within callback handler you can
also call callback.reschedule() to repeat this event after initial timer or callback.reschedule(newTime) to
change it.

Whatever you pass as 2nd argument will be returned in callback as data .

The example script restarts server after 2 hours but notifies players 5 minutes before that.

onEvent('server.load', function (event) {
 event.server.schedule(115 * MINUTE, event.server, function (callback) {
 callback.data.tell('Server restarting in 5 minutes!')
 })

 event.server.schedule(120 * MINUTE, event.server, function (callback) {
 callback.data.runCommand('/stop')
 })
})

Examples

Running Commands
Preface
Sometimes, you might want to run a command (such as /tell @a Hi!), in your code.

Most always, there is better method, but sometimes, you just don't want to learn more complicated
topics, and just run a command.

Basic Usage
The most basic usage would be to call runCommand() from a server class.

 So instead you can use the following to not log these messages.

Using the execute command

To get around this, you can use the execute command:

Utils.server.runCommand(`tell @a Hi!`)

If this command returns a message (usually an error) that is normally placed chat, it will be
logged. This is not desired outside of debugging situations.

Utils.server.runCommandSilent(`tell @a Hi!`)

If the server is not loaded at the time this is ran, then the code will not work.

Although you can use player.runCommandSilent() , it is not recommend as the command runs
with the players permission level.

Commands are ran in the default dimension (the overworld usually) at 0, 0, 0

//This example makes a bedrock box around creepers when they spawn
onEvent('entity.spawned', event => {
	if (event.entity.type != "minecraft:creeper") return // the following code only runs when creepers are spawned

	event.server.runCommandSilent(`execute in ${event.entity.level.dimension} positioned ${event.entity.x}
${event.entity.y} ${event.entity.z} run fill ~-1 ~-1 ~-1 ~1 ~2 ~1 bedrock hollow`)
})

Examples

Spawning Entities
Basics
Overview
Spawning entities consists of 3 steps:

Making the variable storing the future entity
Modifying the attributes of the entity
Spawning the entity

Making a variable to store the entity
Example

Breaking down the example
let

Indicate that we are making a new variable and get the game ready to store it.
Not required in 1.16.

myEntity
This is the name of the variable.
Can be anything you chose that is a-Z,0-9 without spaces (you know like any other
variable).

=
sets myEntity to what is about to follow.

level
This is any level object that you choose.

level is just a placeholder, in your code it needs to be defined, for many events you can use
event.level in place of level and it will work

You can create a entity from a block instead of level, and this is often preferred to learn
that, scroll to that section afterward

let myEntity = level.createEntity("cow")

This can be obtained numerous ways and will depend on what you are trying to do.
In many events you can use event.level to get the level.
Note: this is a LevelJS object, not a minecraftLevel object.

minecraftLevel.asKJS() returns a LevelJS.
.

The dot operator either
Gets a property of the object.
Calls a method of the object.
Calls a beaned method of the object.

In this case it is used to call the method createEntity . You can tell because the
following parenthesis mean its a method.

createEntity(...)
As mentioned above is the method called by the dot operator

"cow"
this is the name of the entity
"minecraft:cow" or "create:potato_projectile" are also valid

in fact when you put a resource location without a prefix, then minecraft: will be
assumed.

Modifying the properties
Example

Breaking Down the Example
myEntity

Gets the variable that was made earlier.
.

The dot operator mentioned earlier.
motionY = 0.1

Instead of being a method, like last time, this is a beaned method.
This means that there exists a method setMotion and under the hood it runs
setMotionY(0.1) that is automatically called with this code.
In this case it sets the motionY property of the entity.

You many not change arbitrary bits of NBT this way! Only bits that there is a
method for. In the example, all of the lines are just running beaned methods.
However, you can do it with a different method, listed in a different section

myEntity.x = 0
myEntity.y = 69
myEntity.z = 0
myEntity.motionY = 0.1
myEntity.noGravity = true

below.

Spawning the entity
Example

With understanding from the previous sections you should be able to figure out what this does.

It get myEntity, then calls the method .spawn().

This spawn() method creates the entity in the world.

Creating the entity from a block
You can also call createEntity from a block! This is handy if you want to spawn the entity in the
position of a block.

This code offsets the entity to be in the center of the block.

myEnity.spawn()

Note: myEntity is still a variable! So you may not use let myEntity again within the scope!
However this variable is still linked to the entity so calling myEntity.motionY = 0.1 will still set
the vertical motion of the entity. (This can be a useful thing, but bad if you are unaware)

let myEntity = block.createEntity("cow")

Again, block is just a place holder, you will need to change it to something else like maybe
event.block for your code to work!

This does not spawn the entity in the center of the block, it just sets the entity's coordinates
to that of the block, thus being misaligned

let myEntity = block.createEntity("cow")
myEntity.x+=0.5
myEntity.y+=0.5
myEntity.z+=0.5

Setting NBT
You can set the NBT to whatever you want! It's recommend using mergeFullNBT to do this.

Item Entities
There are two ways to create item entities in KubeJS.

popItem
If you want to easily create the item from a certain block then you can use the popItem method.

Example

The item can be an Item.of() instead if you wish

createEntity("item")
Creating an item entity with a little more control be done identically to any other entity, except you
get a couple more methods.

Example

myEntity.withNBT({VillagerData:{}})

myEntity.fullNBT.VillagerData = {} will not work, because .fullNBT is a beaned method, not a
property! The only thing that the beaned method lets do is to be able to use let nbt =
myEntity.fullNBT to set a variable to NBT to be read or use myEntity.fullNBT = {} to set all of it
at once.

Note it is fullNBT not nbt, because kubejs uses nbt for a different purpose. A bit confusing,
but it is what it is.

block.popItem('minecraft:diamond')

let itemEntity = block.createEntity("item")
itemEntity.y+=0.8
itemEntity.x+=0.5
itemEntity.z+=0.5
itemEntity.item = Item.of("encahanted_book").enchant("thorns",2)

In this example

the .item beaned method is used to set the item of the item stack (Required)
the .pickupDelay beaned method is used to set the pickup delay (Optional)

Examples
Spawns an endermite when braking dirt with a 5% chance

Turns gravel to sand and drops clay when right clicked with flint

Overrides enchanting table behavior when clicking on it with an item in you hand. Instead will
make the item float up a while, then fall back down.

itemEntity.item.count = 1
itemEntity.pickupDelay = 600
itemEntity.noGravity = true
itemEntity.motionY = 0.08
itemEntity.spawn()

onEvent("block.break", event => {
	if (event.block.id != "minecraft:dirt" || Math.random() > 0.05) return
 	//only if its dirt and only has 5% chance
 	let myEndermite = event.block.createEntity("endermite")
 	myEndermite.x += 0.5
 	myEndermite.y += 0.5
 	myEndermite.z += 0.5
 	myEndermite.spawn()
})

onEvent('block.right_click', event => {
 if (event.block.id == 'minecraft:gravel' && event.item.id == 'minecraft:flint') {
 event.block.set('sand')
 event.item.count--
 event.block.popItem('clay')
 }
})

onEvent('block.right_click', event => {
 if (event.block.id !='minecraft:enchanting_table') return
 if (event.item.count == 0) return

 	event.cancel()
 let item = event.item.copy()
 //if did not use .copy() the item would still be referencing the one in the hand, so setting the count to 1 would
set the count in the hand to 1
 item.count = 1
 	event.item.count--
 	
 let itemEntity = event.block.createEntity('item')
 itemEntity.y+=0.8 // on the top of the encahnting table, not in it
 itemEntity.x+=0.5
 itemEntity.z+=0.5
 itemEntity.item = item
 itemEntity.item.count = 1
 itemEntity.pickupDelay = 100
 itemEntity.noGravity = true
 itemEntity.motionY = 0.08
 itemEntity.spawn()
 	
 	function callback (i) {
 	//changes the scope of itemEntity (otherwise if used 2 times in a row within 5 seconds, problems would occur)
 	event.server.scheduleInTicks(100, callback => { // this code runs 5 seconds later
 		i.noGravity = false
 	})
 }
 	callback(itemEntity)
})

Classes
Available fields and methods and examples on how to use them

Classes

Object

Parent
None (and itself at the same time, don't question it)

Variables and Functions
Name Type Info

toString() String Tag collection type.

equals(Object other) boolean Checks equality with another object.

hashCode() int Hash code of this object. It is used to
optimize maps and other things,
should never be used for object
equality.

class Class Object's type/class.

Parent class of all Java objects.

https://mods.latvian.dev/books/kubejs/page/string
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/object

Classes

String

Parent

Object

Variables and Functions
Name Type Info

empty boolean Returns if string is empty a.k.a string
=== ''

toLowerCase() String Returns a copy of this string, but with
all characters in upper case

toUpperCase() String Returns a copy of this string, but with
all characters in lower case

equalsIgnoseCase(String other) boolean Hash code of this object. It is used to
optimize maps and other things,
should never be used for object
equality.

length() int Number of characters

charAt(int index) char Single character at index

Class of string objects, such as "abc" (and in JS 'abc' works as well)

https://mods.latvian.dev/books/kubejs/page/object
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/string
https://mods.latvian.dev/books/kubejs/page/string
https://mods.latvian.dev/books/kubejs/page/string
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/primitive-types
https://mods.latvian.dev/books/kubejs/page/primitive-types

Classes

Primitive Types
Information
Primitive types are objects that don't have a real class and don't inherit methods from Object.

All primitive types
Type Java class Info

void Void No type

byte Byte 8 bit decimal number.

short Short 16 bit decimal number.

int Integer 32 bit decimal number, most common
decimal type.

long Long 64 bit decimal number.

float Float 32 bit floating point number.

double Double 64 bit floating point number.

char Character Single character in String such as 'a'
or '-' .

boolean Boolean Only true and false values. Can be
checked in if function without
comparing to true, as if (x) or if (!x)
instead of if (x == true) or if (x ==
false) .

https://mods.latvian.dev/books/kubejs/page/object
https://mods.latvian.dev/books/kubejs/page/string

Global
Constants, classes and functions

Global

Components, KubeJS and
you!
In 1.18.2 and beyond KubeJS uses Components in a lot of places. It returns them for entity names,
item names and accepts them for everything from tooltips to sending messages to players.

Making your own Components starts from the ComponentWrapper class, invokable with just
Component or Text from anywhere. The examples all use Component but Text works just the same.

ComponentWrapper methods:
Name Return Type Info

of(Object o) MutableComponent Returns a component based on what
was input. Accepts strings, primitives
like numbers, snbt/nbt format of
Components and a couple others.

clickEventOf(Object o) ClickEvent Returns a ClickEvent based on what
was input. See examples below

prettyPrintNbt(Tag tag) Component Returns a component with a prettified
version of the input NBT.

join(MutableComponent seperator,
Iterable<? extends Component>
texts)

MutableComponent Returns the result of looping through
texts and joining them, separating

each one with seperator .

string(String text) MutableComponent Returns a basic unformatted
TextComponent with just the input
text

translate(String key) MutableComponent Returns a basic unformatted
TranslatableComponent with the input
key.

translate(String key, Object... objects) MutableComponent Returns an unformatted
TranslatableComponent with objects
as the replacements for %s in the
translation output.

All examples use event.player.tell from the player.chat event to output their example, but they
will with anywhere that accepts a Component!

Name Return Type Info

keybind(String keybind) MutableComponent Returns a basic unformatted
KeybindComponent with the specified
keybind.

<color>(Object text) MutableComponent Returns a basic Component with the
specified color for text coloring. Valid
colors are in the list below. Do not
include the <> brackets.

A list of colors accepted in various places:

black
darkBlue
darkGreen
darkAqua
darkRed
darkPurple
gold
gray
darkGray
blue
green
aqua
red
lightPurple
yellow
white

Basic examples:

onEvent('player.chat', event => {
 // Tell the player a normal message
 event.player.tell(Component.string('Hello world'))
 // Now in black
 event.player.tell(Component.black('Welcome to the dark side, we have cookies!'))
 // Tell them the diamond item, in whatever language they have set
 event.player.tell(Component.translate('item.minecraft.diamond'))
 // Now tell them whatever key they have crouching set to
 event.player.tell(Component.keybind('key.sneak'))
 // And finally show them the nbt data of the item they are holding
 event.player.tell(Component.prettyPrintNbt(event.player.mainHandItem.nbt))
})

MutableComponent
These are methods you can call on any MutableComponent. This includes ComponentKJS, which is
a KubeJS extension for vanilla's components and is injected into vanillas code on runtime. All
methods from ComponentKJS are included, but only relevant ones from vanilla are included.

Name Return Type Info

iterator() Iterator<Component> Returns an Iterator for the
components contained in this
component, useful for when multiple
have been joined or appended. From
ComponentKJS.

self() MutableComponent Returns the component you ran it on.
From ComponentKJS.

toJson() JsonElement Returns the Json representation of this
Component. From ComponentKJS.

<color>() MutableComponent Modifies the Component with the
specified color applied as formatting,
and returns itself. Do not include the
<> brackets. From ComponentKJS.

color(Color c) MutableComponent Modifies the Component to have the
input Color, and returns itself. (Color
is a Rhino color). From ComponentKJS.

noColor() MutableComponent Modifies the Component to have no
color, and returns itself. From
ComponentKJS.

bold()
italic()
underlined()
strikethrough()
obfuscated()

MutableComponent Modifies the Component to have said
formatting and returns itself. From
ComponentKJS.

bold(@Nullable Boolean value)
italic(@Nullable Boolean value)
underlined(@Nullable Boolean value)
strikethrough(@Nullable Boolean
value)
obfuscated(@Nullable Boolean value)

MutableComponent Modifies the Component to have said
formatting and returns itself. From
ComponentKJS.

Name Return Type Info

insertion(@Nullable String s) MutableComponent Makes the Component insert the
specified string into the players chat
box when shift clicked (does not send
it) and returns itself. From
ComponentKJS.

font(@Nullable ResourceLocation s) MutableComponent Changes the Components font to the
specified font and returns itself. For
more information on adding fonts see
the Minecraft Wiki's Resource packs
page. From ComponentKJS.

click(@Nullable ClickEvent s) MutableComponent Sets this components ClickEvent to
the specified ClickEvent. From
ComponentKJS.

hover(@Nullable Component s) MutableComponent Sets the hover tooltip for this
Component to the input Component.
From ComponentKJS.

setStyle(Style style) MutableComponent Sets the style to the input Style
(net.minecraft.network.chat.Style)
and returns itself. Not recommended
for use, use the specific methods
added by CompontentKJS instead.

append(String string) MutableComponent Appends the input string as a basic
TextComponent to this Component
then returns itself.

append(Component component) MutableComponent Appends the input Component to this
Component then returns itself.

withStyle(Style style) MutableComponent Merges the input style with the
current style, preffering properties
from the new style if a conflict exists.

getStyle() Style Returns this Components current
Style.

getContents() MutableComponent Returns this Components contents.
Will return the text for
TextComponents, the pattern for
SelectorComponents and an empty
string for all other Components.

getSiblings() List<Component> Returns a list of all Components which
have been append()ed to this
Component

plainCopy() BaseComponent Returns a basic copy of this,
preserving only the contents and not
the style or siblings.

copy() MutableComponent Returns a full copy of this Component,
preserving style and siblings

https://minecraft.fandom.com/wiki/Resource_Pack#Fonts
https://minecraft.fandom.com/wiki/Resource_Pack#Fonts

Name Return Type Info

getString() String Returns this components text as a
String. Will return a blank string for
any non-text component

More complex examples:

// First a prefix, like a rank. This won't be changing so we can just declare it up here.
const prefix = Component.darkRed('[Admin]').underlined()

onEvent('player.chat', event => {

 // First cancel the event because we are going to be sending the message ourselves
 event.cancel()

 // The main Component we will be adding stuff to. It is just a copy of the prefix component for now
 let component = prefix.copy() // If we didn't copy it all the modifications we made to it would be applied to the
original as well!

 // Make a component of the players name and then surround with < > and make it white again. Then append it
our main copmponent.
 // A component will inherit any styiling it doesnt have from whatever it has been .append()ed to, so you need to
apply formatting	rather liberally some times!
 let playerName = Component.string(event.getUsername())
 // Doing it this way means we only have to apply the white formatting and no underline once to the name
 let nameComponent = Component.white(' <').underlined(false).append(playerName).append('> ')
 component.append(nameComponent)

 // Finnally add the message (obfuscated, of course) and send it!
 // We make sure to set its color and underline though, otherwise it will end up inheriting the red and underline
from the prefix!
 component.append(Component.string(event.message).obfuscated().white().underlined(false))
 event.server.tell(component)

})	

Global

Item and Ingredient
When making recipes you can specify items in many ways, the most common is just to use
'namspace:id' , like 'minecraft:diamond' , however you can also use Item#of and Ingredient#of for
advanced additions, such as NBT or count.

Note that Item and Ingredient are not the same! They may work similarly but there are differences.
Item can only ever represent a single item type whereas Ingredient can represent multiple item
types (and multiple instances of the same item type with different properties such as NBT data).
For most cases Ingredient should be preferred over Item.

Item/ItemWrapper
Its Java class name is ItemWrapper but it is bound to Item in JS.

Name Return Type Info

of(ItemStackJS in) ItemStackJS Returns an ItemStackJS based on
what was input.
Note that this relies mostly on Rhinos
type wrapping to function, see
paragraph below about
ItemStackJS#of for more info

of(ItemStackJS in, int count) ItemStackJS See above. count will override any
other count set from the first
parameter.

of(ItemStackJS in, CompoundTag tag) ItemStackJS See above. NBT is merged, with the
input NBT taking priority over existing
NBT.

of(ItemStackJS in, int count,
CompoundTag nbt)

ItemStackJS Combines the functionality of the
above two.

withNBT(ItemStackJS in,
CompoundTag nbt)

ItemStackJS Same as the corresponding #of.

withChance(ItemStackJS in, double
chance)

ItemStackJS Same as #of, chance will override
currently set chance.

getList() ListJS Returns a list of ItemStackJS, one per
registered item.

https://mods.latvian.dev/books/kubejs-legacy/page/item-and-ingredient#:~:text=Item%23of%20relies%20on%20Rhinos%20type%20wrapping%20to%20function%2C%20which%20calls%20ItemStackJS%23of.%20This%20tries%20its%20best%20to%20turn%20the%20input%20into%20an%20ItemStackJS.%20If%20no%20match%20is%20found%20ItemStackJS.EMPTY%20is%20returned.

Name Return Type Info

getTypeList() ListJS Returns a list of String, one per
registered item.

getEmpty() ItemStackJS Returns ItemSTackJS.EMPTY

clearListCache() void Clears the caches used for #getList
and #getTypeList

fireworks(Map<String, Object>
properties)

FireworkJS Returns a FireworkJS based on the
input map of propeties. See
FireworkJS#of on the FireworkJS page
for more information <TODO: Make
and link FireworkJS page>

getItem(ResourceLocation id) Item Returns the instance of the Item class
associated with the item id passed in.

@Nullable findGroup(String id) CreativeModTab Returns the Creative tab associated
with the id passed in, returns null if
none found.

exists(ResourceLocation id) boolean Returns if the item id passed in exists
or not.

isItem(@Nullable Object o) boolean Just does an instanceof ItemStackJS
check on the object passed in.

Item#of relies on Rhinos type wrapping to function, which calls ItemStackJS#of. This tries its best
to turn the input into an ItemStackJS. If no match is found ItemStackJS.EMPTY is returned. Valid
inputs:

null/ItemStack.EMPTY/Items.EMPTY/ItemStackJS.EMPTY - will return ItemStackJS.EMPTY
ItemStackJS - will return the same object passed in.
FluidStackJS - will return a new DummyFluidItemStackJS
IngredientJS - will return the first item in the Ingredient
ItemStack - will return a new ItemStackJS wrapping the ItemStack passed in
ResourceLocation - will lookup this ResourceLocation in the item registry and return it if
found. If not found will return ItemStackJS.EMPTY, and throw an error if
RecipeJS.itemErrors is true
ItemLike - will return a new ItemStackJS of the input
JsonObject - will return an item based on properties in the Json. item will be used as the
item id, or tag if item does not exist. count , chance and nbt all set their respective
properties
RegEx - will return a new ItemStackJS of the first item id that matches this regex.
String (CharSequence) - will parse it and return a new ItemStackJS based on the input
item id. Prefix with nx to change the count (where n is any number between 1 and 64).
Put # before the item id to parse it as a tag instead. Put @ before the item id to parse it

as a modid instead. Prefix with % to parse it as a creative menu tab group. Surround in /
to parse as a RegEx. NOTE: will only be the first item in any of the groups mentioned
above!
Map/JS Object - uses the same rules as a JsonObject.

Ingredient/IngredientWrapper
Its Java class name is IngredientWrapper but it is bound to Ingredient in JS. All static methods.

Name Return Type Info

getNone() IngredientJS Returns ItemStack.EMPTY

getAll() IngredientJS Returns an IngredientJS of every
single item in game. All of them.

of(Object object) IngredientJS Works exactly the same as Item#of
except it recognises Ingredient and
forge json ingredient syntax.

of(Object object, int count) IngredientJS Same as above. The count passed in
will override any from the first
parameter.

custom(Predicate<ItemStackJS>
predicate)

IngredientJS Takes the arrow function or
anonymous function passed in and
makes an IngredientJS with that as
IngredientJS#test.
Return true from the function if the
ItemStackJS passed should match as
an ingredient.

custom(IngredientJS in, Predicate<
ItemStackJS> predicate)

IngredientJS Same as above except it must match
the IngredientJS passed in as the first
parameter before the custom function
is called.

customNBT(IngredientJS in, Predicate
<CompoundTag> predicate)

IngredientJS Same as above except the Predicate
is passed the items NBT instead of the
full ItemStackJS. Useful for advanced
NBT matching.

matchAny(Object objects) IngredientJS Adds the passed in object to an
ingredient. If it is a list then it adds all
items in the list. All objects are passed
through #of before adding.

registerCustomIngredientAction(
String id,
CustomIngredientActionCallback
callback)

void Registers a custom ingredient action.
See the recipe page for more
information.

isIngredient(@Nullable Object o) boolean Just does an instanceof IngredientJS
check on the object passed in.

https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs#bkmrk-poorly-documented-th

Examples

ItemStackJS
A wrapper class for vanilla's ItemStack. All methods listed here are instance methods, all useful
static methods are wrapped in ItemWrapper. Implements IngredientJS and overrides most of its
default methods.

Name Return Type Info

getItem() Item Returns the instance of the Item class
associated with this ItemStackJS.

getItemStack() ItemStack Returns the vanilla ItemStack that this
wraps.

getId() String Returns the item id associated with
this ItemStackJS in the form
mod_name:item_name

getTags() Colletion<ResourceLocation> Returns all item tags the item has.
(NOT NBT tags).

hasTag(ResourceLocation tag) boolean Returns if the item has the input tag
or not.

copy() ItemStackJS Returns a copy of this ItemStackJS.

setCount(int count) void Sets the count on this ItemStackJS.

getCount() int Gets the count.

withCount() ItemStackJS Returns a copy of this ItemStackJS
with a different count.

isEmpty() boolean Returns if this is an empty item or
not.

isInvalidRecipeIngredient() boolean Returns if this is a valid recipe
ingredient.

isBlock() boolean Returns if this item is a BlockItem,
that is it can be placed and form a
block.

@Nullable getNbt() CompoundTag Gets this items NBT data.

Remember that Item and Ingredient are not equivalent!

<TODO: examples>

Name Return Type Info

setNbt(@Nullable CompoundTag tag) void Sets this items NBT data

hasNBT() boolean Returns if this item has NBT data.

getNbtString() String Returns this items NBT data as a
string. If you want to display it to the
player see Text#prettyPrintNbt.

removeNBT() ItemStackJS Returns a copy with no NBT data.

withNBT(CompoundTag nbt) ItemStackJS Returns a copy with the specified NBT
data. Any tags from the original NBT
are kept if not overwritten by the NBT
passed in.

hasChance() boolean Returns if the ItemStackJS has a
chance.

removeChance() void Removes the chance from this
ItemStackJS.

setChance(double c) void Sets the chance for this ItemStackJS.

getChance() double Returns the chance.

withChance(double c) ItemStackJS Returns a copy with the chance
passed in, unless the chance passed
in is the same as the current chance,
in which case it returns this.

getName() Components Returns this items name. Probably a
Translateable Component unless its
been overridden by something else (ie
method below).

withName(@Nullable Component
displayName)

ItemStackJS Returns a copy with a different
display name set.

toString() String Returns a string representing this
ItemStackJS. The same method used
for the /kubejs hand command.

test(ItemStackJS other) boolean Returns if this ItemStackJS equals
another one. Tests for item type and
NBT data.

https://mods.latvian.dev/books/kubejs-legacy/page/components-kubejs-and-you#:~:text=prettyPrintNbt(Tag%20tag)

Name Return Type Info

testVanilla(ItemStack other) boolean Returns if this ItemStackJS equals the
passed in ItemStack. Tests for item
type and NBT data.

testVanillaItem(Item item) boolean Returns if the Item passed in is the
same as this ItemStackJS's Item.
Basically checks they are the same
item type.

getStacks() Set<ItemStackJS> Returns this ItemStackJS as the only
entry in a Set.

getVanillaItems() Set<Item> Returns this ItemStackJS associated
Item as the only entry in a Set.

getFirst() ItemStackJS Retuns a copy of this ItemStackJS

hashCode() int Returns a hash code of the Item and
NBT data.

equals(Object o) boolean Returns if this is equal to the input
object.

strongEquals(Object o) boolean Returns if this is equal to the input
object. Checks count as well.

getEnchantments() MapJS Returns a MapJS of this itemStackJS
enchament id's to their level.

hasEnchantment(Enchantment
enchantment, int level)

boolean Returns if this ItemStackJS is
enchanted with a minimum of the
passed in enchantment level.

enchant(MapJS enchantments) ItemStackJS Enchants a copy of this ItemStackJS
with the MapJS passed in (it should be
a map of enchantment ids to levels),
then returns the copy.

enchant(Enchantment enchantment,
int level)

ItemStackJS Enchants a copy of this item with the
passed in Enchantment at the
specified level, then returns the copy.

getMod() String Returns the mod id of the mod this
item is from.

ignoreNBT() IngredientJS Returns a new IgnoreNBTIngredientJS
of this item.

Name Return Type Info

weakNBT() IngredientJS Returns a new WeakNBTIngredientJS
of this item.

areItemsEqual(ItemStackJS other) boolean Returns if this item type is equal to
the item type of the passed in
ItemStackJS

areItemsEqual(ItemStack other) boolean Returns if this item type is equal to
the item type of the passed in
ItemStack

isNBTEqual(ItemStackJS other) boolean Returns if the NBT of this ItemStackJS
is equal to the NBT of the ItemStackJS
passed in.

isNBTEqual(ItemStack other) boolean Returns if the NBT of this ItemStackJS
is equal to the NBT of the ItemStack
passed in.

getHarvestSpeed(@Nullable
BlockContainerJS block)

float Returns the mining speed of this
ItemStackJS if used to mine the
passed in BlockContainerJS

getHarvestSpeed() float Returns this items default mining
speed

toJson()
toResultJson()
toRawResultJson()

JsonElement Returns a Json representation of this
ItemStackJS. They all appear to work
almost identically.

toNBT() CompoundTag Returns an NBT representation of this
ItemStackJS, the same sort that
vanilla uses to store items in blocks.

onChanged(@Nullable Tag o) void Sets the items NBT data to the tag
passed in, only if it is a CompoundTag
or null.

getItemGroup() String Returns the name of the creative tab
this item belongs in. An empty string
if it does not exist in the creative tabs
(like a jigsaw block).

getItemIds() Set<String> Returns a set with this items id as the
only entry.

getFluidStack() FluidStackJS Returns null, by default. Overriden by
some superclasses to return the
FluidStackJS that this item represents.

getTypeData() CompoundTag Unknown purpose.

<TODO: Examples>

Other
Examples and how-tos of other things KubeJS can do!

Other

Changing Window Title and
Icon
Yes, you can do that with KubeJS too.

Here's how to do that in PaintNET:

Image not found or type unknown

Example result:

Image not found or type unknown

Image not found or type unknown

To change title, all you have to do is change title in kubejs/config/client.properties .

To change icon, you create a kubejs/config/packicon.png image in standard Minecraft texture
size preferably (64x64, 128x128, 256x256, that kind of size).

The image has to be saved as 32-bit PNG, not Auto-detect/24-bit, otherwise you will get a
JVM crash!

Currently incompatible with Fancy Menu!

Other

Loading Assets and Data
You can also use KubeJS to load assets from resource packs and data from datapacks! While this
isn't the only method, its one of the easiest. Other options are loading datapack jsons
programmatically <TODO: one for assets>.

The kubejs/data folder is loaded identically to the pack/data folder in a datapack and the
kubejs/assets folder is loaded identically to the pack/assets folder in a resourcepack.

Step by step for importing Datapacks and Resourcepacks
1. Make sure that you have permission from creator of the resourcepack or datapack to have

their word embedded in your pack
2. If your resourcepack or datapack is a .zip file, unzip it
3. Inside there should be a file and a folder named either data or assets , go into that folder
4. In you kubejs folder in your instance their should be a folder with the same name as you

just found
5. Transfer the contents (1 or more folders) from the resourcepack or datapack to the one

inside of kubejs

Different places to put things that you should know
kubejs/assets/kubejs/textures/item where you put item textures (png) and mcmeta files
kubejs/assets/kubejs/textures/block where you put block textures (png) and mcmeta files
kubejs/assets/kubejs/textures/fluid where you put fluid textures (png) and mcmeta files
kubejs/assets/kubejs/models/block where you put block models files (json)
kubejs/assets/kubejs/models/item where you put item models files (json)
kubejs/assets/kubejs/sounds where you put sounds (ogg)
kubejs/assets/kubejs/sounds.json where you do client sound registry

How to change the textures models or what ever else of other mods
1. Find the mod jar and extract it (you might need to rename to a zip temporarily if you don't

have the right tools)
2. Inside you should find assets and data folder inside should a folder with the mod then

further sub folders and various assets and data-s
3. For example example-v3.42.5.jar/assets/example/textures/item/foo/thingggy.png
4. Now make this exact folder path in the kubejs folder

kubejs/assets/example/textures/item/foo/thingggy.png , but use a different image (or whatever)

https://mods.latvian.dev/books/kubejs-legacy/page/datapack-load-events
https://mods.latvian.dev/books/kubejs-legacy/page/datapack-load-events

Other

Default Options
You can ship default options from options.txt with KubeJS. This includes keybindings, video
settings, enabled resource packs, controls like autojump and toggle sprint and wierd things like
advanced tooltips.

Why use this instead of just shipping options.txt? If you ship options.txt then the users options will
get overridden every time they update your modpack, where-as KubeJS only sets the options once,
on the first time the modpack boots.

To use it simply make a file called defaultoptions.txt in the kubejs/config folder. Then copy any lines
you want to set by default over from the normal options.txt file. You can also just copy the entire
file if you want to include everything.

A full list of what options the options.txt file can contain is available on the Minecraft Wiki:
https://minecraft.fandom.com/wiki/Options.txt

https://minecraft.fandom.com/wiki/Options.txt

Addons
Scripts using various KubeJS addons for recipes.

Addons

KubeJS UI
You can also always look at existing modpack using KubeJS UI to see how they do it

onEvent('ui.main_menu', event => {
 event.replace(ui => {
 //ui.background('kubejsui:textures/example_background.png')
 ui.tilingBackground('kubejsui:textures/example_background.png', 256)
 ui.minecraftLogo(30)

 ui.button(b => {
 b.name = 'Test'
 b.x = 10
 b.y = 10
 b.action = 'minecraft:singleplayer'
 })

 ui.button(b => {
 b.name = 'Test but in bottom right corner'
 b.x = ui.width - b.width - 10
 b.y = ui.height - b.height - 10
 b.action = 'https://feed-the-beast.com/'
 })

 ui.label(l => {
 l.name = Text.yellow('FTB Stranded')
 l.x = 2
 l.y = ui.height - 12
 l.action = 'https://feed-the-beast.com/'
 })

 ui.image(i => {
 i.x = (ui.width - 40) / 2
 i.y = (ui.height - 30) / 2
 i.width = 40
 i.height = 30

https://www.curseforge.com/minecraft/mc-mods/kubejs-ui

 i.action = 'https://feed-the-beast.com/'
 })

 ui.label(l => {
 l.name = Text.aqua('Large label')
 l.x = 100
 l.y = ui.height - 20
 l.height = 15
 l.shadow = true
 })
 })
})

Addons

KubeJS Thermal

You can use KubeJS Thermal to add recipes to a lot of the machines from the Thermal Series.

Tip: you can use Ctrl/Cmd + F to search this page for the machine you are looking for.

onEvent('recipes', event => {
 // Redstone Furnace
 // Turn four coal into one diamond
 event.recipes.thermal.furnace('minecraft:diamond', '4x minecraft:coal')
 // Dried kelp to leather, with a high energy cost
 event.recipes.thermal.furnace('minecraft:leather', 'minecraft:dried_kelp').energy(20000)

 // Sawmill
 // Input one oak leaf and have a 5% chance of an apple, and 10% of a sapling
 event.recipes.thermal.sawmill([Item.of('minecraft:apple').withChance(0.05),
Item.of('minecraft:oak_sapling').withChance(0.1)], 'minecraft:oak_leaves')
 // Turn an acacia slab into 4 buttons
 event.recipes.thermal.sawmill('4x minecraft:acacia_button', 'minecraft:acacia_slab')

 // Pulverizer
 // Turn any leaf block into 4 sticks with a 50% chance of a fifth. Has a low energy cost.
 event.recipes.thermal.pulverizer(Item.of('minecraft:stick').withChance(4.5), '#minecraft:leaves').energy(100)
 // Pulverise a flint into an iron nugget with a 10% chance of a second
 event.recipes.thermal.pulverizer(Item.of('minecraft:iron_nugget').withChance(1.1), 'minecraft:flint')

 // Induction Smelter
 // Turn one coal block into 4 diamonds with a 50% chance of a fifth
 event.recipes.thermal.smelter(['4x minecraft:diamond', Item.of('minecraft:diamond').withChance(0.5)],
'minecraft:coal_block')
 // Turn an iron ingot and a copper ingot into a gold ingot and require 10,000 FE
 event.recipes.thermal.smelter('minecraft:gold_ingot', ['minecraft:iron_ingot',
'minecraft:copper_ingot']).energy(10000)

https://www.curseforge.com/minecraft/mc-mods/kubejs-thermal
https://www.curseforge.com/minecraft/mc-mods/thermal-foundation

 // Centrifugal Separator
 // Centrifuge one sapling into 50% chance of a stick and 300mb of water
 event.recipes.thermal.centrifuge([Item.of('minecraft:stick').withChance(0.5), Fluid.of('minecraft:water', 300)],
'#minecraft:saplings')
 // Turn 2 sweet berries into red dye
 event.recipes.thermal.centrifuge('minecraft:red_dye', '2x minecraft:sweet_berries')

 // Multiservo Press
 // Press seven bonemeal into a bone.
 event.recipes.thermal.press('minecraft:bone', '7x minecraft:bone_meal')
 // Press an iron dust into an iron nugget using the coin die. To use an item as a die they must have the
thermal:crafting/dies tag!
 event.recipes.thermal.press('minecraft:iron_nugget', ['#forge:dusts/iron', 'thermal:press_coin_die'])

 // Magma Crucible
 // Turn a sapling into 400mb of water
 event.recipes.thermal.crucible(Fluid.of('minecraft:water', 400), '#minecraft:saplings').energy(100)
 // Melt ores into lava
 event.recipes.thermal.crucible(Fluid.of('minecraft:lava', 500), '#forge:ores')

 // Blast Chiller
 // Chill an arrow into an arrow of slowness
 event.recipes.thermal.chiller(Item.of('minecraft:tipped_arrow', '{Potion:"minecraft:slowness"}'),
[Fluid.of('minecraft:water', 100), 'minecraft:arrow'])
 // Chill lava into raw iron using the ball cast. For an item to count as a cast it needs to have the
thermal:crafting/casts tag!
 event.recipes.thermal.chiller('minecraft:raw_iron', [Fluid.of('minecraft:lava', 1000), 'thermal:chiller_ball_cast'])

 // Fractionating Still
 // Refine Creosete oil into Tree oil and latex, with a chance of producing rubber
 event.recipes.thermal.refinery([Item.of('thermal:rubber').withChance(0.8), Fluid.of('thermal:tree_oil', 100),
Fluid.of('thermal:latex', 50)], Fluid.of('thermal:creosote', 200))
 // Refine tree oil into a small amount of refined fuel with a high energy cost
 event.recipes.thermal.refinery(Fluid.of('thermal:refined_fuel', 50), Fluid.of('thermal:tree_oil',
100)).energy(20000)
 // Unbrew an awkward potion. This uses the cofh core potion fluid with some nbt.
 event.recipes.thermal.refinery([Fluid.of('minecraft:water', 1000), 'minecraft:nether_wart'],
Fluid.of('cofh_core:potion', 1000, '{Potion:"minecraft:awkward"}'))

 // Alchemical Imbuer

 // Combine a redstone dust and 200mb of lava to make 200mb of destabilized redstone
 event.recipes.thermal.brewer(Fluid.of('thermal:redstone', 200), [Fluid.of('minecraft:lava', 200),
'minecraft:redstone'])
 // Brew an uncraftable potion (potion with no nbt) with 64 bedrock and an awkward potion. Oh, and an insane
energy cost
 event.recipes.thermal.brewer(Fluid.of('cofh_core:potion', 1000), [Fluid.of('cofh_core:potion', 1000,
'{Potion:"minecraft:awkward"}'), '64x minecraft:bedrock'])

 // Fluid Encapsulator
 // Fill a sponge with water. Why? Well why not?
 event.recipes.thermal.bottler('minecraft:wet_sponge', [Fluid.of('minecraft:water', 10000), 'minecraft:sponge'])
 // Turn any gear into a machine frame by filling it with destabilized redstone. Nice and low energy cost too
 event.recipes.thermal.bottler('thermal:machine_frame', ['#forge:gears', Fluid.of('thermal:redstone',
500)]).energy(500)
})

Addons

KubeJS Create
Create integration for KubeJS. This mod allows you to add and properly edit recipes of Create mod
in KubeJS scripts. All supported recipe types and examples are below. See Recipes page for more
info.

Simple Recipe Types
createCrushing
createCutting
createMilling
createBasin
createMixing

supports .heated() and .superheated()
createCompacting

supports .heated() and .superheated()
Can have any number of inputs
Used basin

createPressing
Only has one item input
Used on any surface

createSandpaperPolishing
createSplashing

AKA Bulk Washing
createDeploying
createFilling
createEmptying
createHaunting

Bulk Smoking is vanilla smoking.
Bulk Blasting is vanilla smelting (as long as there is not a smoking recipe) or vanilla
blasting.

Syntax

Bulk Smoking and Bulk Blasting recipes are auto generated from vanilla smelting, smoking,
and blasting recipes.

https://www.curseforge.com/minecraft/mc-mods/create
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs

event.recipes.create.mixing(output[], input[])
or
event.recipes.createMixing(output[], input[])

Output can be an item, fluid, or an array of multiple.

Input can be an ingredient, fluid, or an array of multiple.

Examples

Mechanical Crafter
Syntax
event.recipes.create.mechanicalCrafting(output, pattern[], {patternKey: input})
or
event.recipes.createMechanicalCrafting(output, pattern[], {patternKey: input})

onEvent('recipes', event => {
	event.recipes.createCrushing([
		'2x bone_meal',
		Item.of('5x bone_meal').withChance(0.5)
], 'bone_block')

	event.recipes.create.mixing(Fluid.of('create:builders_tea',500),[
		Fluid.of('milk',250),
 	 	Fluid.of('water',250),
		'#leaves'
]).heated()

	event.recipes.createFilling('create:blaze_cake', [
		'create:blaze_cake_base',
		Fluid.of('minecraft:lava', 250)
])

	event.recipes.createEmptying([
		'minecraft:glass_bottle',
		Fluid.of('create:honey', 250)
], 'minecraft:honey_bottle')
})

This recipe type is the same as regular crafting table shaped recipe, however the pattern can be up
to 9x9, instead of 3x3.

Examples

Sequenced Assembly
Syntax
event.recipes.create.sequencedAssembly(output[], input,
sequence[]).transitionalItem(transitionalItem).loops(loops)
or
event.recipes.createSequencedAssembly(output[], input,
sequence[]).transitionalItem(transitionalItem).loops(loops)

Output is an item or an array of items.

If it is an array:

The first item is the real output, the remainder are scrap.
Only one item is chosen, with equal chance of each.
You can use Item.of('create:shaft').withChance(2) to double the chance of that specific item to
being chosen.

Input is an ingredient.

Transitional Item is any item* and is used during the intermediate stages of the assembly.

Sequence is an array of recipes.

onEvent('recipes', event => {
	event.recipes.createMechanicalCrafting('minecraft:piston', [
		'CCCCC',
		'CPIPC',
		'CPRPC'
], {
		C: '#forge:cobblestone',
		P: '#minecraft:planks',
		R: '#forge:dusts/redstone',
		I: '#forge:ingots/iron'
	})
})

The only legal recipes are:
createCutting
createPressing
createDeploying
createFilling

The transitional item needs to be the output of each of these recipes.
The transitional item needs to be the an input of each of these recipes.

Loops is the number of time that the recipes repeats. Calling .loops() is optional, and defaults to 4.

Examples

onEvent('recipes', event => {
	event.recipes.createSequencedAssembly([// start the recipe
		Item.of('create:precision_mechanism').withChance(130.0), // this is the item that will appear in JEI as the result
		Item.of('create:golden_sheet').withChance(8.0), // the rest of these items will part of the scrap
		Item.of('create:andesite_alloy').withChance(8.0),
		Item.of('create:cogwheel').withChance(5.0),
		Item.of('create:shaft').withChance(2.0),
		Item.of('create:crushed_gold_ore').withChance(2.0),
		Item.of('2x gold_nugget').withChance(2.0),
		'iron_ingot',
		'clock'
],'create:golden_sheet',[// 'create:golden_sheet' is the input
		// the transitional item set by "transitionalItem('create:incomplete_large_cogwheel')" is the item used during the
intermediate stages of the assembly
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:cogwheel']),
 	 	// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:large_cogwheel']),
		event.recipes.createDeploying('create:incomplete_precision_mechanism',['create:incomplete_precision_mecha
nism','create:iron_nugget'])
]).transitionalItem('create:incomplete_precision_mechanism').loops(5) // set the transitional item and the loops
(amount of repetitions)

	// for this code to work, kubejs:incomplete_spore_blossom need to be added to the game
	let inter = 'kubejs:incomplete_spore_blossom' // making a varrible to store the transition item makes the code
more readable

Transitional Items
As mentioned earlier, any item can be a transition item. However, this is not completely
recommended.

If you wish to make your own transitional item, its best if you make the type
create:sequenced_assembly .

1.16 syntax

1.18 syntax

	event.recipes.createSequencedAssembly([
			Item.of('spore_blossom').withChance(16.0), // this is the item that will appear in JEI as the result
			Item.of('flowering_azalea_leaves').withChance(16.0), // the rest of these items will part of the scrap
			Item.of('azalea_leaves').withChance(2.0),
			'oak_leaves',
			'spruce_leaves',
			'birch_leaves',
			'jungle_leaves',
			'acacia_leaves',
			'dark_oak_leaves'
],'flowering_azalea_leaves', [// 'flowering_azalea_leaves' is the input
			// the transitional item is a varrible, that is "kubejs:incomplete_spore_blossom", and is used during the
intermediate stages of the assembly
			event.recipes.createPressing(inter, inter),
			// like a normal recipe function, is used as a sequence step in this array. Input and output have the transitional
item
			event.recipes.createDeploying(inter, [inter, 'minecraft:hanging_roots']),
			event.recipes.createFilling(inter, [inter, Fluid.of('minecraft:water',420)]),
			event.recipes.createDeploying(inter, [inter, 'minecraft:moss_carpet']),
 			event.recipes.createCutting(inter, inter)
]).transitionalItem(inter).loops(2) // set the transitional item and the loops (amount of repetitions)
})

onEvent('item.registry', event => {
	event.create('incomplete_spore_blossom').displayName('Incomplete Spore
Blossom').type('create:sequenced_assembly')
})

Mysterious Conversion

Example
Goes inside of client scripts and not in an event.

Preventing Recipe Auto-Generation
If you don't want a smelting, blasting, smoking, crafting, or stone-cutting to get an auto-generated
counter part, then include manual_only at the end of the recipe id.

Example

Other types of prevention, can be done in the create config (the goggles button leads you there).

If it is not in the config, then you can not change it.

onEvent('item.registry', event => {
	event.create('incomplete_spore_blossom','create:sequenced_assembly')
})

Mysterious Conversion recipes are client side only, so the only way to add them currently is
using reflection.

//makes the varribles used
let MysteriousItemConversionCategory =
java('com.simibubi.create.compat.jei.category.MysteriousItemConversionCategory')
let ConversionRecipe = java('com.simibubi.create.compat.jei.ConversionRecipe')

//adds in the recipes
MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('minecraft:apple', 'minecraft:carrot'))

MysteriousItemConversionCategory.RECIPES.add(ConversionRecipe.create('minecraft:golden_apple',
'minecraft:golden_carrot'))

onEvent('recipes', event => {
	event.shapeless('wet_sponge',['water_bucket','sponge']).id('kubejs:moisting_the_sponge_manual_only')
})

Addons

3rd Party addons
3rd party add-ons: (Not including mods with optional dependencies of KubeJS)

Name: Description Links Loader Versions

Ponder for KubeJS Make custom Create
Ponder scenes with
KubeJS.

Wiki CurseForge
Discord Github

Forge 1.16.5
1.18.2

LootJS A mod for packdevs
to easily modify the
loot system with
KubeJS.

Wiki CurseForge
Modrinth Discord
Github

Forge & Fabric 1.18.2

MoreJS A mod for packdevs
to extend KubeJS
with more events and
utilities.

Wiki CurseForge
Modrinth Discord
Github

Forge & Fabric 1.18.2

ProbeJS A typing generator
mod to generate
KubeJS typings.
Enabling Intellisense
for your KubeJS
environments!

Wiki CurseForge
Github

Forge & Fabric 1.18.2

KubeJS
ComputerCraft

Adds support for
KubeJS to add
ComputerCraft
peripherals to any
block.

CurseForge Github Forge & Fabric 1.18.2

KubeJS Borealis Adds a form of
"documentation" to
the mod KubeJS using
the mod Borealis

Example CurseForge
Github

Forge 1.16.5
1.18.2

KubeJS
TwitchIntegration

Cool twitch
integration

Events Examples
CurseForge Github

Forge 1.16.5

KubeJS: RTJC A proof of concept
add-on that allows
you to compile and
run Java code at
runtime.

Description
CurseForge Github

Forge 1.16.5

https://www.curseforge.com/minecraft/mc-mods/create
https://modrinth.com/mod/create
https://github.com/AlmostReliable/ponderjs-forge/wiki
https://www.curseforge.com/minecraft/mc-mods/ponder
https://discord.com/invite/ThFnwZCyYY
https://github.com/AlmostReliable/ponderjs-forge
https://www.curseforge.com/minecraft/mc-mods/ponderjs
https://github.com/AlmostReliable/lootjs/wiki
https://www.curseforge.com/minecraft/mc-mods/lootjs
https://modrinth.com/mod/lootjs
https://discord.com/invite/ThFnwZCyYY
https://github.com/AlmostReliable/lootjshttps://github.com/AlmostReliable/lootjs
https://github.com/AlmostReliable/morejs/wiki
https://www.curseforge.com/minecraft/mc-mods/morejs
https://modrinth.com/mod/morejs
https://discord.com/invite/ThFnwZCyYY
https://github.com/AlmostReliable/morejs
https://github.com/Prunoideae/ProbeJS/wiki/ProbeJS-Documentation-Specification
https://www.curseforge.com/minecraft/mc-mods/probejs
https://github.com/Prunoideae/ProbeJS
https://mods.latvian.dev/ComputerCraft
https://www.curseforge.com/minecraft/mc-mods/kubejs-computercraft
https://github.com/Prunoideae/KubeJS-CC
https://i.gyazo.com/4de6c9bb33867d7c037cb6e34899160a.mp4
https://github.com/Hunter19823/KubeJSBorealis/blob/master/src/test/resources/example.js
https://www.curseforge.com/minecraft/mc-mods/kubejs-borealis
https://github.com/Hunter19823/KubeJSBorealis
https://github.com/Hunter19823/KubeJSTwitchIntegration/blob/master/src/main/java/pie/ilikepiefoo2/kubejstwitchintegration/KubeJSEvents.java
https://github.com/Hunter19823/KubeJSTwitchIntegration/tree/master/src/test/resources
https://www.curseforge.com/minecraft/mc-mods/kubejs-twitchintegration
https://github.com/Hunter19823/KubeJSTwitchIntegration
https://github.com/ThatGamerBlue/kubejs-rtjc/blob/1.16/README.md
https://www.curseforge.com/minecraft/mc-mods/kubejs-rtjc
https://github.com/ThatGamerBlue/kubejs-rtjc

Kubejs Debug
Adapter

A Debug Adapter
Protocol
implementation for
KubeJS scripts.

Modrinth Github Forge 1.18.2

https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://modrinth.com/mod/kubejs-debug-adapter
https://github.com/warmthdawn/kubejs-debug-adapter

Addons

KJSPKG
KJSPKG is a package manager for KubeJS that can allow you to download different example scripts
and libraries into your instance. It works with legacy versions, as well as KubeJS 6. More info on

the new wiki.

https://github.com/Modern-Modpacks/kjspkg
https://wiki.latvian.dev/books/kubejs/page/kjspkg
https://wiki.latvian.dev/books/kubejs/page/kjspkg

