Global

Constants, classes and functions

e Components, Kube]S and you!

e Iltem and Ingredient




Components, Kube|S and
you!

In 1.18.2 and beyond Kube]S uses Components in a lot of places. It returns them for entity names,
item names and accepts them for everything from tooltips to sending messages to players.

All examples use event.player.tell from the player.chat event to output their example, but they
will with anywhere that accepts a Component!

Making your own Components starts from the ComponentWrapper class, invokable with just
Component or Text from anywhere. The examples all use Component but Text works just the same.

ComponentWrapper methods:

Name Return Type Info

of(Object o) MutableComponent Returns a component based on what
was input. Accepts strings, primitives
like numbers, snbt/nbt format of
Components and a couple others.

clickEventOf(Object o) ClickEvent Returns a ClickEvent based on what
was input. See examples below

prettyPrintNbt(Tag tag) Component Returns a component with a prettified
version of the input NBT.

join(MutableComponent seperator, MutableComponent Returns the result of looping through

Ilterable<? extends Component> texts and joining them, separating

texts) each one with seperator .

string(String text) MutableComponent Returns a basic unformatted
TextComponent with just the input
text

translate(String key) MutableComponent Returns a basic unformatted
TranslatableComponent with the input
key.

translate(String key, Object... objects) MutableComponent Returns an unformatted

TranslatableComponent with objects
as the replacements for %s in the
translation output.



Name Return Type
keybind(String keybind) MutableComponent
<color>(Object text) MutableComponent

A list of colors accepted in various places:

e black

e darkBlue

e darkGreen
e darkAqua
e darkRed

e darkPurple
e gold

e gray

e darkGray
e blue

e green

e aqua

e red

e lightPurple
e yellow

e white

Basic examples:

onEvent('player.chat’, event => {
// Tell the player a normal message
event.player.tell(Component.string(‘Hello world'))

// Now in black

Info

Returns a basic unformatted
KeybindComponent with the specified
keybind.

Returns a basic Component with the
specified color for text coloring. Valid
colors are in the list below. Do not
include the <> brackets.

event.player.tell(Component.black('Welcome to the dark side, we have cookies!'))

// Tell them the diamond item, in whatever language they have set
event.player.tell(Component.translate(‘item.minecraft.diamond'))
// Now tell them whatever key they have crouching set to
event.player.tell(Component.keybind('key.sneak'))

/I And finally show them the nbt data of the item they are holding

event.player.tell(Component.prettyPrintNbt(event.player.mainHandltem.nbt))

}



MutableComponent

These are methods you can call on any MutableComponent. This includes ComponentK]S, which is
a Kube]S extension for vanilla's components and is injected into vanillas code on runtime. All
methods from ComponentK]S are included, but only relevant ones from vanilla are included.

Name

iterator()

self()

toJson()

<color>()

color(Color ¢)

noColor()

bold()

italic()
underlined()
strikethrough()
obfuscated()

bold(@Nullable Boolean value)
italic(@Nullable Boolean value)
underlined(@Nullable Boolean value)
strikethrough(@Nullable Boolean
value)

obfuscated(@Nullable Boolean value)

Return Type

Iterator<Component>

MutableComponent

JsonElement

MutableComponent

MutableComponent

MutableComponent

MutableComponent

MutableComponent

Info

Returns an lterator for the
components contained in this
component, useful for when multiple
have been joined or appended. From
ComponentK]S.

Returns the component you ran it on.
From ComponentK]S.

Returns the Json representation of this
Component. From ComponentK]S.

Modifies the Component with the
specified color applied as formatting,
and returns itself. Do not include the
<> brackets. From ComponentK]S.

Modifies the Component to have the
input Color, and returns itself. (Color
is a Rhino color). From ComponentK]S.

Modifies the Component to have no
color, and returns itself. From
ComponentK]S.

Modifies the Component to have said
formatting and returns itself. From
ComponentK]S.

Modifies the Component to have said
formatting and returns itself. From
ComponentK]S.



Name

insertion(@Nullable String s)

font(@Nullable ResourcelLocation s)

click(@Nullable ClickEvent s)

hover(@Nullable Component s)

setStyle(Style style)

append(String string)

append(Component component)

withStyle(Style style)

getStyle()

getContents()

getSiblings()

plainCopy()

copy()

Return Type

MutableComponent

MutableComponent

MutableComponent

MutableComponent

MutableComponent

MutableComponent

MutableComponent

MutableComponent

Style

MutableComponent

List<Component>

BaseComponent

MutableComponent

Info

Makes the Component insert the
specified string into the players chat
box when shift clicked (does not send
it) and returns itself. From
ComponentK]S.

Changes the Components font to the
specified font and returns itself. For
more information on adding fonts see

the Minecraft Wiki's Resource packs

page. From ComponentK]S.

Sets this components ClickEvent to
the specified ClickEvent. From
ComponentK]S.

Sets the hover tooltip for this
Component to the input Component.
From ComponentK]S.

Sets the style to the input Style
(net.minecraft.network.chat.Style)
and returns itself. Not recommended
for use, use the specific methods
added by CompontentK]S instead.

Appends the input string as a basic
TextComponent to this Component
then returns itself.

Appends the input Component to this
Component then returns itself.

Merges the input style with the
current style, preffering properties
from the new style if a conflict exists.

Returns this Components current
Style.

Returns this Components contents.
Will return the text for
TextComponents, the pattern for
SelectorComponents and an empty
string for all other Components.

Returns a list of all Components which
have been append()ed to this
Component

Returns a basic copy of this,
preserving only the contents and not
the style or siblings.

Returns a full copy of this Component,
preserving style and siblings


https://minecraft.fandom.com/wiki/Resource_Pack#Fonts
https://minecraft.fandom.com/wiki/Resource_Pack#Fonts

Name Return Type Info

getString() String Returns this components text as a
String. Will return a blank string for
any non-text component

More complex examples:

// First a prefix, like a rank. This won't be changing so we can just declare it up here.

const prefix = Component.darkRed('[Admin]').underlined()

onEvent('player.chat', event => {

/] First cancel the event because we are going to be sending the message ourselves

event.cancel()

// The main Component we will be adding stuff to. It is just a copy of the prefix component for now

let component = prefix.copy() // If we didn't copy it all the modifications we made to it would be applied to the

original as well!

// Make a component of the players name and then surround with < > and make it white again. Then append it
our main copmponent.

/I A component will inherit any styiling it doesnt have from whatever it has been .append()ed to, so you need to
apply formatting[rather liberally some times!

let playerName = Component.string(event.getUsername())

// Doing it this way means we only have to apply the white formatting and no underline once to the name

let nameComponent = Component.white(' <').underlined(false).append(playerName).append('> ')

component.append(nameComponent)

// Finnally add the message (obfuscated, of course) and send it!

// We make sure to set its color and underline though, otherwise it will end up inheriting the red and underline

from the prefix!

component.append(Component.string(event.message).obfuscated().white().underlined(false))

event.server.tell(component)

Hno



ltem and Ingredient

When making recipes you can specify items in many ways, the most common is just to use
'namspace:id' , like 'minecraft:diamond' , however you can also use Item#of and Ingredient#of for
advanced additions, such as NBT or count.

Note that Item and Ingredient are not the same! They may work similarly but there are differences.
Item can only ever represent a single item type whereas Ingredient can represent multiple item
types (and multiple instances of the same item type with different properties such as NBT data).
For most cases Ingredient should be preferred over ltem.

ltem/ltemWrapper

Its Java class name is IltemWrapper but it is bound to Item in JS.

Name Return Type Info

of(ltemStack]S in) ltemStack]S Returns an ltemStack]S based on
what was input.
Note that this relies mostly on Rhinos
type wrapping to function, see

paragraph below about
IltemStack]S#of for more info

of(ltemStack]S in, int count) IltemStack])S See above. count will override any
other count set from the first
parameter.

of(ltemStack]S in, CompoundTag tag) IltemStack]S See above. NBT is merged, with the
input NBT taking priority over existing
NBT.

of(ltemStack]S in, int count, ltemStack]S Combines the functionality of the

CompoundTag nbt) above two.

withNBT(ltemStack]S in, IltemStack]S Same as the corresponding #of.

CompoundTag nbt)

withChance(ltemStack]S in, double IltemStack)S Same as #of, chance will override
chance) currently set chance.
getList() List)S Returns a list of ltemStack]S, one per

registered item.

getTypelList() ListJS Returns a list of String, one per
registered item.


https://mods.latvian.dev/books/kubejs-legacy/page/item-and-ingredient#:~:text=Item%23of%20relies%20on%20Rhinos%20type%20wrapping%20to%20function%2C%20which%20calls%20ItemStackJS%23of.%20This%20tries%20its%20best%20to%20turn%20the%20input%20into%20an%20ItemStackJS.%20If%20no%20match%20is%20found%20ItemStackJS.EMPTY%20is%20returned.

Name Return Type Info

getEmpty() IltemStack])S Returns ltemSTack|S.EMPTY

clearListCache() void Clears the caches used for #getList
and #getTypelist

fireworks(Map<String, Object> Firework]S Returns a Firework]S based on the

properties) input map of propeties. See
FireworkJS#of on the Firework]S page
for more information <TODO: Make
and link Firework]S page>

getltem(ResourcelLocation id) Iltem Returns the instance of the Item class
associated with the item id passed in.

@Nullable findGroup(String id) CreativeModTab Returns the Creative tab associated
with the id passed in, returns null if
none found.

exists(ResourcelLocation id) boolean Returns if the item id passed in exists
or not.

isltem(@Nullable Object o) boolean Just does an instanceof IltemStack]S

check on the object passed in.

Iltem#of relies on Rhinos type wrapping to function, which calls IltemStack]JS#of. This tries its best
to turn the input into an ItemStack]S. If no match is found ItemStack]S.EMPTY is returned. Valid

inputs:

e null/ltemStack.EMPTY/Items.EMPTY/ltemStack]S.EMPTY - will return ItemStack]S.EMPTY
ltemStack]JS - will return the same object passed in.

FluidStack]S - will return a new DummyFluidltemStack]S

Ingredient)S - will return the first item in the Ingredient

ItemStack - will return a new ItemStack]S wrapping the ItemStack passed in
ResourcelLocation - will lookup this ResourcelLocation in the item registry and return it if
found. If not found will return ItemStackJS.EMPTY, and throw an error if
RecipeJS.itemErrors is true

ItemLike - will return a new ItemStack]S of the input

JsonObject - will return an item based on properties in the Json. item will be used as the
item id, or tag if item does not exist. count, chance and nbt all set their respective
properties

RegEx - will return a new ItemStack]S of the first item id that matches this regex.

String (CharSequence) - will parse it and return a new ItemStack]S based on the input
item id. Prefix with nx to change the count (where n is any number between 1 and 64).
Put # before the item id to parse it as a tag instead. Put @ before the item id to parse it
as a modid instead. Prefix with % to parse it as a creative menu tab group. Surround in /
to parse as a RegEx. NOTE: will only be the first item in any of the groups mentioned
above!



e Map/JS Object - uses the same rules as a JsonObject.

Ingredient/IngredientWrapper

Its Java class name is IngredientWrapper but it is bound to Ingredient in JS. All static methods.

Name

getNone()

getAll()

of(Object object)

of(Object object, int count)

custom(Predicate<ltemStack|S>
predicate)

custom(Ingredient)S in, Predicate<
ItemStack]S> predicate)

customNBT(Ingredient]S in, Predicate
<CompoundTag> predicate)

matchAny(Object objects)

registerCustomingredientAction(
String id,
CustomlingredientActionCallback
callback)

isingredient(@Nullable Object o)

Return Type

Ingredient)S

Ingredient)S

Ingredient)S

Ingredient)S

Ingredient)S

Ingredient)S

Ingredient)S

Ingredient)S

void

boolean

Remember that Item and Ingredient are not equivalent!

Info

Returns ItemStack.EMPTY

Returns an IngredientJS of every
single item in game. All of them.

Works exactly the same as Item#of
except it recognises Ingredient and
forge json ingredient syntax.

Same as above. The count passed in
will override any from the first
parameter.

Takes the arrow function or
anonymous function passed in and
makes an Ingredient)S with that as
Ingredient)S#test.

Return true from the function if the
IltemStack]S passed should match as
an ingredient.

Same as above except it must match

the Ingredient)S passed in as the first
parameter before the custom function
is called.

Same as above except the Predicate
is passed the items NBT instead of the
full ItemStack]S. Useful for advanced
NBT matching.

Adds the passed in object to an
ingredient. If it is a list then it adds all
items in the list. All objects are passed
through #of before adding.

Registers a custom ingredient action.

See the recipe page for more
information.

Just does an instanceof Ingredient)S
check on the object passed in.


https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs#bkmrk-poorly-documented-th

Examples

<TODO: examples>

ltemStack]S

A wrapper class for vanilla's IltemStack. All methods listed here are instance methods, all useful
static methods are wrapped in ltemWrapper. Implements Ingredient)S and overrides most of its

default methods.

Name

getltem()

getltemStack()

getld()

getTags()

hasTag(Resourcelocation tag)

copy()

setCount(int count)

getCount()

withCount()

isEmpty()

isinvalidRecipelngredient()

isBlock()

@Nullable getNbt()

setNbt(@Nullable CompoundTag tag)

Return Type

ltem

ltemStack

String

Colletion<ResourcelLocation>

boolean

IltemStack]S

void

int

IltemStack])S

boolean

boolean

boolean

CompoundTag

void

Info
Returns the instance of the Iltem class
associated with this ItemStack]S.

Returns the vanilla ItemStack that this
wraps.

Returns the item id associated with
this ItemStack]JS in the form
mod_name:item_name

Returns all item tags the item has.
(NOT NBT tags).

Returns if the item has the input tag
or not.

Returns a copy of this ltemStack]S.

Sets the count on this ltemStack]S.

Gets the count.

Returns a copy of this ItemStack]S
with a different count.

Returns if this is an empty item or
not.

Returns if this is a valid recipe
ingredient.

Returns if this item is a Blockltem,
that is it can be placed and form a
block.

Gets this items NBT data.

Sets this items NBT data



Name

hasNBT()

getNbtString()

removeNBT()

withNBT(CompoundTag nbt)

hasChance()

removeChance()

setChance(double ¢)

getChance()

withChance(double c)

getName()

withName(@Nullable Component

displayName)

toString()

test(ltemStack]S other)

testVanilla(ltemStack other)

Return Type

boolean

String

ItemStack]S

ItemStack]S

boolean

void

void

double

ItemStack]S

Components

ItemStack]S

String

boolean

boolean

Info

Returns if this item has NBT data.

Returns this items NBT data as a
string. If you want to display it to the

player see Text#prettyPrintNbt.

Returns a copy with no NBT data.

Returns a copy with the specified NBT
data. Any tags from the original NBT
are kept if not overwritten by the NBT
passed in.

Returns if the ItemStack]S has a
chance.

Removes the chance from this
IltemStack]S.

Sets the chance for this ItemStack]S.

Returns the chance.

Returns a copy with the chance
passed in, unless the chance passed
in is the same as the current chance,
in which case it returns this.

Returns this items name. Probably a
Translateable Component unless its
been overridden by something else (ie
method below).

Returns a copy with a different
display name set.

Returns a string representing this
IltemStack]S. The same method used
for the /kubejs hand command.

Returns if this ltemStack]S equals
another one. Tests for item type and
NBT data.

Returns if this ItemStack]S equals the
passed in ltemStack. Tests for item
type and NBT data.


https://mods.latvian.dev/books/kubejs-legacy/page/components-kubejs-and-you#:~:text=prettyPrintNbt(Tag%20tag)

Name

testVanillaltem(ltem item)

getStacks()

getVanillaltems()

getFirst()

hashCode()

equals(Object o)

strongEquals(Object o)

getEnchantments()

hasEnchantment(Enchantment
enchantment, int level)

enchant(MapJS enchantments)

enchant(Enchantment enchantment,
int level)

getMod()

ignoreNBT()

weakNBT()

Return Type

boolean

Set<ltemStack|S>

Set<ltem>

ItemStack]S

int

boolean

boolean

MapJS

boolean

ItemStack]S

ItemStack]S

String

Ingredient)S

Ingredient)S

Info

Returns if the Item passed in is the
same as this ItemStack]S's Item.
Basically checks they are the same
item type.

Returns this ItemStack]S as the only
entry in a Set.

Returns this ItemStack]S associated
Item as the only entry in a Set.

Retuns a copy of this IltemStack]S

Returns a hash code of the Item and
NBT data.

Returns if this is equal to the input
object.

Returns if this is equal to the input
object. Checks count as well.

Returns a Map]S of this itemStack]S
enchament id's to their level.

Returns if this ltemStack]S is
enchanted with a minimum of the
passed in enchantment level.

Enchants a copy of this ItemStack]S
with the Map]S passed in (it should be
a map of enchantment ids to levels),
then returns the copy.

Enchants a copy of this item with the
passed in Enchantment at the
specified level, then returns the copy.

Returns the mod id of the mod this
item is from.

Returns a new IgnoreNBTIngredient)S
of this item.

Returns a new WeakNBTIngredient)S
of this item.



Name

areltemsEqual(ltemStack]S other)

areltemsEqual(ltemStack other)

isNBTEqual(ltemStack]S other)

isNBTEqual(ltemStack other)

getHarvestSpeed(@Nullable
BlockContainer]S block)

getHarvestSpeed()

toJson()
toResult)Json()
toRawResultJson()

toNBT()

onChanged(@Nullable Tag o)

getltemGroup()

getltemlds()

getFluidStack()

getTypeData()

<TODO: Examples>

Return Type

boolean

boolean

boolean

boolean

float

float

JsonElement

CompoundTag

void

String

Set<String>

FluidStack]S

CompoundTag

Info

Returns if this item type is equal to
the item type of the passed in
ltemStack]S

Returns if this item type is equal to
the item type of the passed in
IltemStack

Returns if the NBT of this ItemStack]S
is equal to the NBT of the ItemStack]S
passed in.

Returns if the NBT of this ItemStack]S
is equal to the NBT of the ItemStack
passed in.

Returns the mining speed of this
ltemStack]S if used to mine the
passed in BlockContainer)S

Returns this items default mining
speed

Returns a Json representation of this
IltemStack]S. They all appear to work
almost identically.

Returns an NBT representation of this
ltemStack]S, the same sort that
vanilla uses to store items in blocks.

Sets the items NBT data to the tag
passed in, only if it is a CompoundTag
or null.

Returns the name of the creative tab

this item belongs in. An empty string

if it does not exist in the creative tabs
(like a jigsaw block).

Returns a set with this items id as the
only entry.

Returns null, by default. Overriden by
some superclasses to return the
FluidStackJS that this item represents.

Unknown purpose.






