
Getting Started
A step by step guide for learning the basics of KubeJS

Introduction and Installation
Your First Script
Basics Custom Mechanics
Using ProbeJS

Introduction and Installation
Installation
Install the mod and its two dependencies Architectury and Rhino.
Make you use the most resent version of each mods for your version.
If you are using 1.16 fabric then use this instead.

When you first install KubeJS, you will need to launch Minecraft with the mods (and the game not
crashing) to generate the some folders and files.

The kubejs folder
Finding it
Everything you do in KubeJS in located in the kubejs folder in your instance.

In PolyMC the file structure will look like polymc > instances > instance name > minecraft >
kubejs
In CurseForge launcher the file structure will look like curseforge > minecraft > instances >
instance name > kubejs
In all of the above cases the instance name is the name of the instance
In the normal Minecraft launcher it will be .minecraft > kubejs , unless you changed the
instance folder.

From now on this will be referenced as the kubejs folder.

The contents of it
startup_scripts

Scripts that get loaded once during game startup
Used for adding items and other things that can only happen while the game is
loading
Can reload code not in an event with /kubejs reload_startup_scripts
To reload all the code you must restart the game

client_scripts
Scripts that get loaded every time client resources reload
Used for:

JEI events
tooltips

https://www.curseforge.com/minecraft/mc-mods/kubejs
https://www.curseforge.com/minecraft/mc-mods/architectury-api
https://www.curseforge.com/minecraft/mc-mods/rhino
https://www.curseforge.com/minecraft/mc-mods/kubejs-fabric

other client side things
Can reload code not in an event with /kubejs reload client_scripts
Can reload all the code in client_scripts with F3+T

server_scripts
Scripts that get loaded every time server resources reload (world load, /reload)
Used for modifying:

recipes
tags
loot tables
handling server events

Can reload code not in an event with /kubejs reload server_scripts
Can be all the code in server_scripts with /reload

exported
Data dumps like texture atlases end up here

config
KubeJS config storage.
This is also the only directory that scripts can access other than world directory

assets
Acts as a resource pack
you can put any client resources in here, like:

textures
Example: assets/kubejs/textures/item/test_item.png

models
lang
etc.

Can be reloaded by pressing F3 + T
Can reload only the lang files (so faster) /kubejs reload lang

Read more about it here.
data

Acts as a datapack
you can put any server resources in here, like:

loot tables
Example: data/kubejs/loot_tables/blocks/test_block.json

functions
etc

Can be reloaded with /reload

Read more about it here.
README.txt

Contains the information here

You can find type-specific logs in logs/kubejs/ directory

https://mods.latvian.dev/books/kubejs-legacy/page/loading-assets-and-data
https://mods.latvian.dev/books/kubejs-legacy/page/loading-assets-and-data

Other Useful Tools
Code is just a language that computers can understand. However, the grammar of the language,
called syntax for code, is very precise. When you code has a syntactical error, the computer does
not know what to do and will probably do something that you do not desire.

With KubeJS we will be writing a lot of code, so it important to avoid these errors. Luckily, there are
tools called code editors, that can help us write code correctly.

We recommend installing Visual Studio Code as it is light-ish and has great built in JS support. Now
when you edit you java script files, it will not only warn you when you make most syntactical errors,
but also help you prevent them in the first place.

https://code.visualstudio.com/

Your First Script
Writing Your First Script
If you have launched the game at least once before you will find
kubejs/server_scripts/example_server_script.js It looks like this:

Lets break it down:

// priority: 0
Makes it so that if you have multiple server scripts, this script gets loaded first
If you have only one server_script, this has no effect

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false
settings.logErroringRecipes = true

sets settings for what messages are logged

// priority: 0

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false
settings.logErroringRecipes = true

console.info('Hello, World! (You will see this line every time server resources reload)')

onEvent('recipes', event => {
	// Change recipes here
})

onEvent('item.tags', event => {
	// Get the #forge:cobblestone tag collection and add Diamond Ore to it
	// event.get('forge:cobblestone').add('minecraft:diamond_ore')

	// Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
	// event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

You can remove all four of these lines if you want and it will only change what is put
into the logs

console.info('Hello, World! (You will see this line every time server resources reload)')
Prints the message in the log
This line is useless other then example and should be removed eventually

onEvent('recipes', event => {
This makes an event listener for the recipes event, and will run the code inside when
and only when the recipes event is triggered
This is triggered when server resources reload

Which happens when the world load or the /reload command is used
// Change recipes here

comment, an code in a line following // will be considered a comment and will not
be run
Used for taking notes as you write the code

})
Indicates the end of the 'recipes' event listener

onEvent('item.tags', event => {
 // Get the #forge:cobblestone tag collection and add Diamond Ore to it
 // event.get('forge:cobblestone').add('minecraft:diamond_ore')
 // Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
 // event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

Same thing as the other one but for the item.tags event
You can find the list of all event here

Finally Writing Code For Real
Lets start off by adding a recipe to craft flint from three gravel.

To do so, insert this code right after the recipes event.

It should look like this:

event.shapeless("flint", ["gravel", "gravel", "gravel"])

// priority: 0

settings.logAddedRecipes = true
settings.logRemovedRecipes = true
settings.logSkippedRecipes = false
settings.logErroringRecipes = true

console.info('Hello, World! (You will see this line every time server resources reload)')

https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events

Now lets test it!

Run the command /reload in game, then try crafting three gravel together in any order.

But how does it work?

event
This is a variable that created with the arrow expression in onEvent('recipes', event =>
{ ...

You can have the name be what every you choose, as long as it matches
everywhere

.
The dot operator is used for calling a method of an object
In this case event is the object and shapeless is the method

shapeless(
This is the method that is called by the dot operator on the event
It is taking two arguments, that being an item result and a array input

"
Indicates the start of a string

flint
The contents of the string
You can use create:flour , if it is from a different mod (flint is the same as
minecraft:flint , and both are valid)

"
Signifies the end of the string.
A string is simply a sequence of characters, or letters
You can read more about strings in JS here.

,
separates different arguments in the method.

[

onEvent('recipes', event => {
	// Change recipes here
	event.shapeless("flint", ["gravel", "gravel", "gravel"])
})

onEvent('item.tags', event => {
	// Get the #forge:cobblestone tag collection and add Diamond Ore to it
	// event.get('forge:cobblestone').add('minecraft:diamond_ore')

	// Get the #forge:cobblestone tag collection and remove Mossy Cobblestone from it
	// event.get('forge:cobblestone').remove('minecraft:mossy_cobblestone')
})

https://www.w3schools.com/js/js_strings.asp

Signifies the start of the array.
An array holds multiple values or any type, including other arrays.
You can read more about arrays in JS here.

"gravel", "gravel", "gravel"
The contents of the array
Arrays can hold an indefinite number of elements

]
Closing the array

)
Closing the method

There you go! You can make custom shapeless recipes!

If you want to make other types of recipes, learn about it here, and if you have an addon that adds
more recipe types, loot at its mod page, or here.

https://www.w3schools.com/js/js_arrays.asp
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs-legacy/chapter/addons

Basics Custom Mechanics
By now you have created a custom recipe, or maybe multiple, or even manipulated tags, or
created custom items or blocks.

But you want to do more then that, you want to add a custom mechanic, for example milking a
goat.

The first step is to break down your idea into smaller pieces, until each piece is something you can
code.
One thing to note, is that most all things are caused by some trigger. Such as an entity dieing, or a
block being placed. These are detected by events.

Detecting Events
This is just like when we made recipes, but that time the event was triggered not by a players
action, but by the game doing internal operations, that being getting to the time that is for
registering recipes.

As a refresher, here is detecting the recipes event:

To change the event detected, we need to change what is in the ' s. But to what? Luckily there is a
list of all event page in this wiki!

Searching the ID column, we can scroll down and find that there is an event named
item.entity_interact which happens to be the one that we want for milking the goat.

Now we just put that in there, and we can now run code when a player right clicks an entity.

To test we can use Utils.server.tell() to detect when the event occurs.

onEvent('recipes', event => {
	//recipes
})

Look at the type column and it will tell you which folder, you will need to put you code into.

onEvent('item.entity_interact', event => {
	//code
})

https://mods.latvian.dev/books/kubejs-legacy/page/your-first-script
https://mods.latvian.dev/books/kubejs-legacy/page/recipeeventjs
https://mods.latvian.dev/books/kubejs-legacy/page/tageventjs
https://mods.latvian.dev/books/kubejs-legacy/page/custom-items
https://mods.latvian.dev/books/kubejs-legacy/page/custom-blocks
https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events

But this occurs to it entities, and want to only affect what happens to goats.
To do this, we need to know information about the context of the event.

Calling Methods of an Event
Up to this point you may have been wondering what the purpose of the event => { is.

You can recall that for the custom recipe, used it to call the method that added the recipe.

For each event that we detect the variable event will have different methods. The
item.entity_interact event has methods:

.getEntity()

.getHand()

.getItem()

.getTarget()

So in our code we can write:

The are many situations that console.log() , would be better, which put the result in to
instance/logs/kubejs/server.txt .

onEvent('item.entity_interact', event => {
	Utils.server.tell("Entity Interation Detected!")
})

Now to test you can try right clicking an entity and see you will see a message appears in
the chat.

onEvent('recipes', event => {
	event.shapeless('flint', ['gravel', 'gravel', 'gravel'])
}

How are you supposed to know this? Using ProbeJS! There is a whole wiki page about this
addon!

onEvent('item.entity_interation', event => {
	event.getTarget()
})

.getEntity() gets the player, while .getTarget() gets the entity

https://mods.latvian.dev/books/kubejs-legacy/page/using-probejs

What does this do?
Nothing!
Why?
Because the .getEntity() method does not do anything, but it returns the entity.

To see this we can put it into the chat.

Because of this, you might think what we need to do is run event.getEntity().toString() to get the
entity type.

But this is wrong. You should not be using .toString() as there is almost always a better way. In this
case its using the method .getType() of entity that returns a string of the type of the entity.

This code is good, but it can be better because of a feature called BEANS.

This feature is very simple:

Methods that start with get and take no parameters, can be shorted from foo.getBar() to
foo.bar
Methods that start with set and take one parameter, can be shorted from
foo.setBar("cactus") to foo.bar = "cactus"

So in our case the code can be shortened to:

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.getTarget())
})

Now when you interact with an entity you can see what some details about it!

What is put in the chat is not the actual value is, as only Strings can be displayed. All other
types (such as EntityJS) have a toString() method that is called which extracts some
information and returns a string that is then displayed instead.

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.getTarget().getType())
})

onEvent('item.entity_interation', event => {
	Utils.server.tell(event.target.type)
})

Alright, this is all good, but we want to make the code do stuff, not just tell tell us about the entities
type. Notably we want to run code if an the type is a certain value.

We do this by using a control structure called: if!

If Statements
The basic syntax is as following:
if (condition) {result}
The condition is a boolean, which holds a value: true or false.
And if the boolean equates to true, then the code in result runs, otherwise it does not.

Here is an example:

Lets make this useful, we need to use a condition to run the code based on the entity type.

Testing equality:

So our code can look like:

onEvent('item.entity_interact', event => {
 	Utils.server.tell(event.target.type)
 	if (true) {
 	Utils.server.tell("True")
 }
 if (false) {
 	Utils.server.tell("False")
 }
})

When you interact with an entity in the chat you will be told the True, but not the False.

//GOOD
"foo" == "foobar" // this is false
"foo" == "foo" // this is true

//BAD
"foo" = "foobar" // a single '=' does assignment (we will get to this later) NOT equality

onEvent('item.entity_interact', event => {
 	if (event.target.type == "minecraft:goat") {
 	Utils.server.tell("Is a Goat")

Now any code that we want to run when a goat is interacted with, we will place inside of this if
statement.

This works, but it can be better.

Something that as you write more code will become increasingly important is code readability. In
this case it can be improved with what is know as guard statements. In this case it will look like:

Guard Statements

This might look more confusing at first but is really quite simple.

Firstly, I am using != instead of == , which is the same as, except it returns the opposite, so true
if they are unequal, and false if they do equal.

Secondly, id you do not include {} then the if will only apply to the next line immediately after,
and everything after is considered to be out of the if.

Thirdly, return in this context will end the execution of the code.
So if the entity type is not a goat, then execution will not get passed line 2.

The next step is to take a bucket, but before we can do that, we need to ensure the player is
holding a bucket.

Getting the item in the players hand
 We can use the method .getItem() so event.getItem() which can be beaned to event.item .

Now we get the type of item we can use .getId() so event.item.getId() so event.item.id .

 }
})

Now interacting with a goat will provide the message Is a Goat when interacting with a
goat!

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat") return
 Utils.server.tell("Is a Goat")
})

Learn more about ifs here.

https://www.w3schools.com/js/js_if_else.asp

We could use another if, but I want to show you a different option, the OR boolean operator:

so we can put this in or code to be:

Now to take the item, we will manipulate the count of it. We can get the count of the item, subtract
one from it, then set the count to the result.

.getCount()
get the count of an item

.setCount()
sets the count of an item

We can write the code:

Now we bean it to:

true || true // is true
true || false // is true
false || true // is true
false || false // is false

false || false || true || false // is true
false || false || false || false // is false

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")
})

This should say in the chat Is a Goat and is Holding a Bucket if you right click a goat with a
bucket

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.setCount(event.item.getCount() - 1)
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

But there is a better way to write this using something know as syntactical sugar. This is just a
fancy term for using symbols in a special order that lets you write a piece of code with less total
characters to do a different thing with under the hood.

In the example above we used the basic assignment operator = .
But there are other assignment operators! Such as the subtraction assignment operator -= .

Here is it in the code:

Instead of getting the value, then subtracting one, it can now be thought of as simply reducing the
value by 1.

But wait, there's more! For adding or subtracting by 1, you can make the code even smaller,
appending ++ or -- to then end.

Epic, we made it smaller! None of that was required, but it looks a lot nicer.

Giving the Player Items
We can go quick cause we know all the steps for all that is left.

 	event.item.count = event.item.count - 1
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count -= 1
})

There are other assignment operators, such as one for addition, += , multiplication, *= ,
division, /= , modulo, %= , logical or ||= , logical and, &&== , bitwise xor, ^= , bitwise and,
&= , bitwise or, |= , left bitshift, <<= , right bitshift, >>>= , signed right bitshift >>= , and
of course minus, -=

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--
})

event.getPlayer() for player but event.player because of beans. Player has a method called
.give(ItemStack) to give an item so event.player.give(ItemStack) . And in our case ItemStackJS is
'milk_bucket' . So our final code:

Now we can remove the debugging line Utils.server.tell("Is a Goat and is Holding a Bucket") .

It seem good. Right? All done. Wrong!

When programming, you always have to be careful about edge-cases. These are situations that
are typically at extremes on situations. For example you write some code to function differently if
you have 5 or more levels, but when you have 5 levels exactly, some logic differently causing an
expected result.

Our code currently mishandles an edge case. The edge case is when the player has one bucket in
their hand.

To resolve this bug, we could add an if to check if the count is one, then change the logic, but this
is not required because their is method that does everything for us. The method .giveInHand() is
identical to the .give() except it first attempts to put the item in the players hand if it is empty.

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 Utils.server.tell("Is a Goat and is Holding a Bucket")

 	event.item.count--

 	event.player.give('milk_bucket')
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.give('milk_bucket')
})

When holding a stack of buckets and right clicking a goat, a bucket will be consumed and
you gain a milk bucket.

When holding one bucket in your hand, not in the first slot, and with nothing else in the first
slot. When right-clicking a goat the milk bucket does not stay in your hand as is intuitive, but
instead get placed in the first slot.

Putting this in our code looks like:

Now it seems like we are done! But compare with milking a cow, its just not as satisfying.

Adding Sound
Although adding feedback in to you creations, usually in the form of sound effects, and particles,
does not change the effect or your creation, it has a major effect on how engaging, polished, and
interesting your creation appears.

Luckily playing sound is really easy with KubeJS, because many different classes have a
.playSound() method.
We want the sound to originate from the goat being milked so we can use event.target to get the
goat, then just call .playSound() .

.playSound() takes some parameters:
Either the id of the sound, or the id, the volume , and the pitch .
Lets keep thing simple by only using the id .

Although you can register new sounds with KubeJS, it would be easier to use the existing cow
milking sound. The id of this sound is entity.cow.milk .

Putting this into the code looks like:

There we go! We are done!

Recap

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.giveInHand('milk_bucket')
})

onEvent('item.entity_interact', event => {
 	if (event.target.type != "minecraft:goat" || event.item.id != "minecraft:bucket") return
 	event.item.count--
 	event.player.giveInHand('milk_bucket')
 	event.target.playSound('entity.cow.milk')
})

Now when milking a goat, you hear the milking sound.

Now that we implemented a feature together you will be able to make some of your own basic
custom features too!

Don't be too intimidated by how long it took us, we went through every single detail, but you
already know those so it will take you a fraction of the time it took to make this.

Here is a step by step list of how you can make your own mechanic:

1. Determine what triggers the mechanic.
1. This is the event.
2. In this example we did item.entity_interact .
3. A list of all events is here.

2. Narrow down when the code of you event runs with guard statements.
1. Use an if and return.
2. In our case it is detecting the entity as a goat and the item as a bucket.
3. Use ProbeJS or the second wiki or the source code to get the information you need.

3. Break down what you want to do as code you can write.
1. In our case instead of the idea of filling a bucket with milk, the code takes one of the

item and give the player a bucket of milk.
2. Use ProbeJS or the second wiki or the source code to get the information you need.

4. Double check edge cases.
1. You should be always testing you code with most every change you make.
2. You need to be extra careful with edge cases, when making changes too.
3. In our case we replaced player.give() with player.giveInHand() .

5. Add Polish.
1. This includes fixing minor bugs on edge cases.
2. This also involves making sure the player gets feedback such as sound or particles.
3. In our case this is the milking sound.

Other Helpful Things to Know
Although we did not get to it with the example, here are some simple things that would be helpful
to know:

Cancelling events:
Sometimes you want the default action of an event to not occur.
An example is maybe if you wanted to add milking of horses.

There already is an interaction for right clicking horses, getting on them.
The player would both milk and be put on the horse if the event is not
canceled.

The syntax is event.cancel() .
You can place it anywhere in your code and the effect will be the same, the
default action will not occur.

Only some events are cancel-able.
The non-cancel-able events are listed in the list of all events.

https://mods.latvian.dev/books/kubejs-legacy/page/list-of-all-events
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons
https://mods.latvian.dev/kubejs.com/wiki
https://github.com/KubeJS-Mods/KubeJS

You can tell if an event is cancel-able with event.isCancelable() .
Some events are partly cancel-able.

They are listed as cancel-able, but don't completely undo the default action.
For example entity.death event, canceling it will not prevent the entity from
dying, but will prevent loot, and statistics.

While loops
They syntax is the same as an if.
The function is the same, except the code inside of the loop will repeat until the
condition becomes false.
Learn more here.

Variables
Using let foo = bar will make a variable named foo and set it to the contents of bar.

To change the value of foo later use foo = bar if foo is already made.
A common use is to reduce repeated code.

So in our example we could have placed let t = event.target at the beginning.
Then every use of event.target could have been replaced with t so
event.target.type become t.type .

Variables massively increase what is possible, and as begin to reveal a lot more
hidden complexities (such as scope, reference vs value and more) that we not gonna
get into right now.
Learn more here.

https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_variables.asp

Using ProbeJS
ProbeJS is an add-on that is built exclusively to help you program.

What it does:
It generates documentation files from digging around in the game code itself. So, you get all the
methods, not only from KubeJS, but also from base Minecraft, no matter they're added by
modloader, or from the other mods you install. Not only can you view these docs, but they are also
formatted in a way that a sufficiently advanced code editor, like VSCode, can understand. So, you
will now get more relevant code suggestions too.

Installation:
Find ProbeJS on the 3rd Party addons list and download the relevant version for you.
Once you've installed it and relaunched your game, run the command /probejs dump .
Now you will need to wait a little while, but after some time, you should see a message alerting you
that the dump is complete.

What just happened?
You can now look and see that there is a new folder located at instance/kubejs/probe/ and inside of
here there are a more folders and files. These are your docs.

Setting up VS Code
1. In VS Code select file > open folder
2. This opens up a file explore window, select the KubeJS folder (instance/) and choose select

folder.

You're done!

Troubleshooting
For many people, autocompletions won't be popped up as they type. You need to configure your
VSCode to setup a valid JavaScript IDE so you can get 100% power of ProbeJS!

No Intellisense at All

https://mods.latvian.dev/books/kubejs-legacy/page/introduction-and-instillation#bkmrk-other-useful-tools
https://mods.latvian.dev/books/kubejs-legacy/page/3rd-party-addons

For some reason, VSCode downloaded by some people are not having builtin JavaScript/TypeScript
support. To check if you have such support enabled, search @builtin JavaScript in the extension tab
in your VSCode, you should see a plugin named TypeScript and JavaScript Language Features , that's the
builtin extension for VSCode to support JS/TS.

If not, then you'll have to install the JavaScript and TypeScript Nightly to get JS/TS support.

Downloading Intellisense Models
If your ISP is weird, downloading Intellisense models for enabling support can take a long time. You
can consider switch to proxy or some other methods to change your Internet environment, maybe
even changing a WiFi can work. If not, then sorry, it's an Internet problem, there's no way to solve
it on VSCode's end.

Too Many Mods
Completion takes a significant amount of performance. You can't expect VSCode to run super-fast
on some ATM8-like modpacks, that's not possible.

For less than 150 mods, VSCode should run at a decent speed, for more than 300 mods,
completions are taking >10s since now VSCode need to examine over 100k item/block/entity
entries before telling you what to type next.

Usage
Properties and Methods of a Class
To know the methods of a class just type in the class name, like Item or BlockProperties , then type a
. now you will see a list of the public methods and properties.

ProbeJS will display the beaned accessors and mutators. However, due to the limitation of
JavaScript syntax, if there's a method having same name with a field/bean, then the name will
always be resolved to the method.

Type Checking and JSDoc
To add type checking for extra safety when coding JavaScript, add //@ts-check to the first line of a
JS file, then you will have VSCode guarding your types for the rest of the file. It's extremely useful
when you're working with some dangerous code which is likely to crash the game if you have a
mistake in type.

Sometimes, due to limitations of TypeScript, you might need to persuade VSCode to skip checking
for some part of your code. Adding //@ts-ignore would help you to do that.

Or maybe you want to tell VSCode: "This should be a list of item names!", or "This method should
have ... as params, and ... as return types!". Then you can add JSDoc to tell VSCode to do that:

Sometimes, if with //@ts-check enabled, you will need to add //@ts-ignore to calm VSCode to accept
your docs.

Searching by Keyword
If you are in VSCode press the explorer button in the top-ish left to open up the explorer pane.

Now navigate to probe > generated > globals.d.ts .
Press Ctrl + F and a little search window should pop up in your editor.
Now type in you key word and look through all the matches.

Tips
If you append class to the front and to the end then you will look for classes so like Item has
8635 results for me, but if I type class Item then the one I want!

In events.d.ts you will find events but only basic information about them.

In constants.d.ts you can see different pieces that you can use whereever.

If you want to find the methods of an event, say item.pickup find it in one of the files (In this case
events.documented.d.ts) and here is the line describing it:

/**
 * @type {Special.Item[]}
 */
let consumableItems = []

ServerEvents.recipes(event => {
	/**
	 *
	 * @param {Internal.Ingredient_} input
	 * @param {Internal.ItemStack_} output
	 * @returns {Internal.ShapedRecipeJS}
	 */
	let make3x3Recipe = (input, output) => {
		return event.recipes.minecraft.crafting_shaped(output, ["SSS", "SSS", "SSS"], { S: input })
	}
})

Look closely and find Internal.ItemPickupEventJS . Since it says Internal , we will look in the the
globals.d.ts file, but if it says Registry then we use registries.d.ts .

Now we will go to the generated file and search ItemPickupEventJS .
Then we find:

This means that we can use the methods .getItem() .getEntity() .getItemEntity() .canCancel() .item
.itemEntity and .entity .

But if we did potion.registry then we get Registry.Potion which brings us to:

So we can use event.create('cactus_juice') but that does not do much so we need to follow one step
further and go to the potion builder, which you see is Internal.PotionBuilder . Now we search
PotionBuilder in globals.d.ts then we see:

declare function onEvent(name: 'item.pickup', handler: (event: Internal.ItemPickupEventJS) => void)

/**
* Fired when an item is about to be picked up by the player.
* @javaClass dev.latvian.mods.kubejs.item.ItemPickupEventJS
*/
class ItemPickupEventJS extends Internal.PlayerEventJS {
 getItem(): Internal.ItemStackJS;
 getEntity(): Internal.EntityJS;
 getItemEntity(): Internal.EntityJS;
 canCancel(): boolean;
 get item(): Internal.ItemStackJS;
 get itemEntity(): Internal.EntityJS;
 get entity(): Internal.EntityJS;
 /**
 * Internal constructor, this means that it's not valid unless you use `java()`.
 */
 constructor(player: Internal.Player, entity: Internal.ItemEntity, stack: Internal.ItemStack);
}

class Potion extends Internal.RegistryObjectBuilderTypes$RegistryEventJS<any> {
	create(id: string, type: "basic"): Internal.PotionBuilder;
	create(id: string): Internal.PotionBuilder;
}

Now we see the methods that we can call after this.

So in our code we could write:

/**
* @javaClass dev.latvian.mods.kubejs.misc.PotionBuilder
*/
class PotionBuilder extends Internal.BuilderBase<Internal.Potion> {
 getRegistryType(): Internal.RegistryObjectBuilderTypes<Internal.Potion>;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean):
this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean,
showIcon: boolean): this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number, ambient: boolean, visible: boolean,
showIcon: boolean, hiddenEffect: Internal.MobEffectInstance_): this;
 effect(effect: Internal.MobEffect_, duration: number): this;
 effect(effect: Internal.MobEffect_, duration: number, amplifier: number): this;
 effect(effect: Internal.MobEffect_): this;
 addEffect(effect: Internal.MobEffectInstance_): this;
 createObject(): Internal.Potion;
 get registryType(): Internal.RegistryObjectBuilderTypes<Internal.Potion>;
 /**
 * Internal constructor, this means that it's not valid unless you use `java()`.
 */
 constructor(i: ResourceLocation);
}

onEvent('potion.registry', event => {
 	event.create('cactus_juice').effect('speed', 10, 5)
})

