
Example scripts for various things you can do with KubeJS

FTB Quests Integration
Reflection / Java access
Painter API
Units
Network Packets
Starting Items
FTB Utilities Rank Promotions
Clearlag 1.12
Scheduled Server Events
Running Commands
Spawning Entities

Examples

FTB Quests Integration
onEvent('ftbquests.custom_task.75381f79', event => {

 log.info('Custom task!')

 event.checkTimer = 20

 event.check = (task, player) => {

 if (player.world.daytime && player.world.raining) {

 task.progress++

 }

 }

})

onEvent('ftbquests.custom_reward.e4f76908', event => {

 log.info('Custom reward!')

 event.player.tell('Hello!')

})

// specific object completion

onEvent('ftbquests.completed.d4f36905', event => {

 if (event.player) {

 event.notifiedPlayers.tell(Text.of(`${event.player.name} completed...

something!`).green())

 }

})

// generic 'quest' object completion. Note: There isnt actually a way to get reliable title on

server side, so dont use event.object.title

onEvent('ftbquests.completed', event => {

 if (event.player && event.object.objectType.id === 'quest') {

 event.notifiedPlayers.tell(Text.of(`${event.player.name} completed a quest!`).blue())

 }

})

// object with tag 'ding' completion

onEvent('ftbquests.completed.ding', event => {

 event.onlineMembers.playSound('entity.experience_orb.pickup')

})

onEvent('entity.death', event => {

 if(event.server

 && event.source.actual

 && event.source.actual.player

 && event.source.actual.mainHandItem.id === 'minecraft:wooden_sword'

 && event.entity.type === 'minecraft:zombie') {

 event.source.actual.data.ftbquests.addProgress('12345678', 1)

 }

})

Very limited reflection is possible, but is not recommended. Use it in cases when KubeJS doesnt
support something.

In 1.18.2+ internal Minecraft classes are remapped to MojMaps at runtime, so you don't have to
use obfuscated names if accessing internal Minecraft fields and methods.

An example of adding a block with a custom material, built using reflection to get the MaterialJS
class, then make a new instance of that with amethyst sounds and material properties from
internal Minecraft classes.

This does come at a cost, it takes 1-2 seconds to load this script, instead of the normal
milliseconds. You should import your classes at the top of the script, instead of in an event,
especially if the event gets triggered more than once.

Reflection / Java access

// Startup script, 1.18.2

const MaterialJS = java("dev.latvian.mods.kubejs.block.MaterialJS")

const Material = java('net.minecraft.world.level.material.Material')

const SoundType = java('net.minecraft.world.level.block.SoundType')

amethystMaterial = new MaterialJS('amethyst', Material.AMETHYST, SoundType.AMETHYST) //

f_164531_ and f_154654_ are the respective obfuscated names of these fields, for older

versions

//This builder uses 1.18.2 syntax, it will not work in 1.16 or 1.18.1

onEvent('block.registry', event => {

	event.create('amethyst_slab', 'slab')

		.material(amethystMaterial)// Use the new MaterialJS instance we created as the material

		.tagBlock('minecraft:crystal_sound_blocks')

		.tagBlock('minecraft:mineable/pickaxe')

		.requiresTool(true)

		.texture('texture', 'minecraft:block/amethyst_block')

})

Painter API allows you to draw things on the screen, both from server and directly from client. This
can allow you to create widgets from server side or effects on screen or in world from client side.

Currently it doesn't support any input, but in future, in-game menus or even GUIs similar to Source
engine ones will be supported.

Paintable objects are created from NBT/Json objects and all have an id. If id isn't provided, a
random one will be generated. Objects x and z are absolute positions based on screen, but you can
align elements in one of the corners of screen. You can bulk add multiple objects in one json object.
All properties are optional, but obviously some you should almost always override like size and
position for rectangles.

paint({...}) is based on upsert principle - if object doesn't exist it will create it (if the object also
contains valid type), otherwise, update existing:

event.player.paint({example: {type: 'rectangle', x: 10, y: 10, w: 20, h: 20}}) - New
rectangle is created
event.player.paint({example: {x: 50}}) - Updates previous rectangle with partial data

You can bulk update/create multiple things in same object:

event.player.paint({a: {x: 10}, b: {x: 30}, c: {type: 'rectangle', x: 10}})

You can remove object with remove: true, bulk remove multiple objects or remove all objects:

event.player.paint({a: {remove: true}})

event.player.paint({a: {remove: true}, b: {remove: true}})

event.player.paint({'*': {remove: true}})

These methods have command alternatives:

/kubejs painter @p {example: {type: 'rectangle', x: 10, y: 10, w: 20, h: 20}}

If the object is re-occuring, it's recommended to create objects at login with all of its static
properties and visible: false , then update it later to unhide it. Painter objects will be cleared
when players leave world/server, if its persistent, then it must be re-added at login every time.

Painter API
About

Currently available objects

Underlined objects are not something you can create

(available for all objects)

Boolean visible
Float x
Float y
Float z
Float w
Float h
Enum alignX (one of 'left', 'center', 'right')
Enum alignY (one of 'top', 'center', 'bottom')
Enum draw (one of 'ingame', 'gui', 'always')
Float moveX
Float moveY
Float expandW
Float expandH

Color color
String texture
Float u0
Float v0
Float u1
Float v1

Color color
Color colorT
Color colorB
Color colorL
Color colorR
Color colorTL
Color colorTR
Color colorBL
Color colorBR
String texture
Float u0
Float v0
Float u1
Float v1

Root

rectangle

gradient

Text text | Text[] textLines
Boolean shadow
Float scale
Color color
Boolean centered
Float lineSpacing

ItemStack item (supports either 'itemid' or vanilla {id: 'item', Count: 4, tag: {...}} NBT
syntax)
Boolean overlay
String customText
Float rotation

Unit is a Rhino Unit. It can be a number, boolean, color, equation. Every Float, Int, Boolean
and Color are also Units, so you can use equations on them.
Int is a int32 number, any whole value, e.g. 40 .
Float is float64 floating point number, e.g 2.35 .
String is a string, e.g. 'example' . Textures usually need resource location
'namespace:path/to/texture.png' .
Color can be either 0xRRGGBB , '#RRGGBB' , '#AARRGGBB', e.g. '#58AD5B' or chat colors
'red' , 'dark_aqua' , etc. RGBA color(Float, Float, Float, Float) is also supported where
Float is any number between 0.0 and 1.0 (supports Units).
Text can be a string 'Example' or Text.of('Red and italic string example').red().italic()
etc formatted string.

$screenW - Screen width
$screenH - Screen height
$delta - Render delta
$mouseX - Mouse X position
$mouseY - Mouse Y position

true - boolean true value, equal to 1.0
false - boolean false value, equal to 0.0
PI - number equal to 3.14159265358979323846
HALF_PI - number equal to 1.57079632679
TWO_PI - number equal to 6.28318530718

text

item

Properties

Available Unit variables

Available Unit constants

https://mods.latvian.dev/books/kubejs/page/units

E - number equal to 2.7182818284590452354

Examples
onEvent('player.logged_in', event => {

	event.player.paint({

		example_rectangle: {

			type: 'rectangle',

			x: 10,

			y: 10,

			w: 50,

			h: 20,

			color: '#00FF00',

			draw: 'always'

		},

		last_message: {

			type: 'text',

			text: 'No last message',

			scale: 1.5,

			x: -4,

			y: -4,

			alignX: 'right',

			alignY: 'bottom',

			draw: 'always'

		}

	})

})

onEvent('player.chat', event => {

	// Updates example_rectangle x value and last_message text value to last message + contents

from event

	event.player.paint({example_rectangle: {x: '(sin((time() * 1.1)) * (($screenW - 32) / 2))', w:

32, h: 32, alignX: 'center', texture: 'kubejs:textures/item/diamond_ore.png'}})

	event.player.paint({last_message: {text: `Last message: ${event.message}`}})

	// Bulk update, this is the same code as 2 lines above, you can use whichever you like better

	// event.player.paint({example_rectangle: {x: 120}, last_message: {text: `Last message:

${event.message}`}})

	event.player.paint({lava: {type: 'atlas_texture', texture: 'minecraft:block/lava_flow'}})

})

Image not found or type unknown

This page describes all functions and operations available for units

Most basic unit is plain number, such as '1' or '4.5' .

You can use variables with $ like '$example' .

Each function requires name parenthesis and comma separated arguments e.g. 'min(PI,
$example)' .

You can combine as many as you want, e.g. 'min(PI, 10 + $example)' .

You can do pretty complex infix, e.g. 'atan2($mouseY, $mouseX) - HALF_PI - HALF_PI / 2' .

true - boolean true value, equal to 1.0
false - boolean false value, equal to 0.0
PI - number equal to 3.14159265358979323846
HALF_PI - number equal to 1.57079632679
TWO_PI - number equal to 6.28318530718
E - number equal to 2.7182818284590452354

cond ? a : b = TERNARY, if cond then a, else b
-a = NEGATE
a + b = SUM
a - b = SUB
a * b = MUL
a / b = DIV
a % b = MOD
a ** b = POW
a & b = BIT AND
a | b = BIT OR
a ^ b = BIT/BOOL XOR
~a = BIT NOT
!a = BOOL NOT
a << b = SHIFT LEFT
a >> b = SHIFT RIGHT

Units

Usage

Constants

Operations

a == b = EQUALS
a != b = NOT EQUALS
a > b = GREATER THAN
a < b = LESS THAN
a >= b = GREATER OR EQUAL THAN
a <= b = LESS OR EQUAL THAN

random()
time()
roundTime()
min(a, b)
max(a, b)
pow(a, b)
abs(a)
sin(a)
cos(a)
tan(a)
atan(a)
atan2(y, x)
deg(a)
rad(a)
log(a)
log10(a)
log1p(a)
sqrt(a)
sq(a)
floor(a)
ceil(a)
if(statement, trueUnit, falseUnit)

Functions

This script shows how to use network packets:

Network Packets

// Listen to a player event, in this case item right-click

// This goes in either server or client script, depending on which side you want to send the

data packet to

onEvent('item.right_click', event => {

 // Check if item was right-clicked on client or server side

 if (event.server) {

 // Send data {test: 123} to channel "test_channel_1". Channel ID can be any string, but

it's recommended to keep it to snake_case [a-z_0-9].

 // Receiving side will be client (because its sent from server).

 event.player.sendData('test_channel_1', { test: 123 })

 } else {

 // It's not required to use a different channel ID, but it's recommended.

 // Receiving side will be server (because its sent from client).

 event.player.sendData('test_channel_2', { test: 456 })

 }

})

// Listen to event that gets fired when network packet is received from server.

// This goes in a client script

onEvent('player.data_from_server.test_channel_1', event => {

 log.info(event.data.test) // Prints 123

})

// Listen to event that gets fired when network packet is received from client.

// This goes in a server script

onEvent('player.data_from_client.test_channel_2', event => {

 log.info(event.data.test) // Prints 456

})

This server script adds items on first time player joins, checking stages. GameStages mod is not
required

Starting Items

// Listen to player login event

onEvent('player.logged_in', event => {

 // Check if player doesn't have "starting_items" stage yet

 if (!event.player.stages.has('starting_items')) {

 // Add the stage

 event.player.stages.add('starting_items')

 // Give some items to player

 event.player.give('minecraft:stone_sword')

 event.player.give(Item.of('minecraft:stone_pickaxe', "{Damage: 10}"))

 event.player.give('30x minecraft:apple')

 }

})

With this script you can have FTB Utilities roles that change over time.

Is for 1.12 only. Requires FTB Utilities.

FTB Utilities Rank
Promotions

events.listen('player.tick', function (event) {

 // This check happens every 20 ticks, a.k.a every second

 if (event.player.server && event.player.ticksExisted % 20 === 0) {

 var rank = event.player.data.ftbutilities.rank

 events.post('test_event', {testValue: rank.id})

 var newRank = ftbutilities.getRank(rank.getPermission('promotion.next'))

 if (newRank) {

 var timePlayed = event.player.stats.get('stat.playOneMinute') / 20 // Seconds player has

been on server

 var timeRequired = newRank.getPermissionValue('promotion.timer').getInt()

 if (timeRequired > 0 && timePlayed >= timeRequired && rank.addParent(newRank)) {

 if (!events.postCancellable('ftbutilities.rank.promoted.' + newRank.id, {'player':

event.player, 'rank': newRank})) {

 event.player.tell('You have been promoted to ' +

newRank.getPermission('promotion.name') + '!')

 }

 ftbutilities.saveRanks()

 }

 }

 }

})

// When player gets promoted to 'trusted' rank, give them gold ingot (uncomment the line)

events.listen('ftbutilities.rank.promoted.trusted', function (event) {

 // event.data.player.give('minecraft:gold_ingot')

})

3 example roles in ranks.txt:

After 5 seconds of play time, player will be promoted to newcomer.
After 15 seconds (or 10 since previous role) they will be promoted to regular.
After 30 seconds (or 15 since previous role) they will be promoted to trusted, etc.

[player]

power: 1

default_player_rank: true

promotion.name: Player

promotion.next: newcomer

promotion.timer: 5

command.ftbutilities.rtp: false

command.ftbutilities.home: false

[newcomer]

power: 5

promotion.name: Newcomer

promotion.next: regular

promotion.timer: 15

ftbutilities.chat.name_format: <&aNewcomer &r{name}>

command.ftbutilities.rtp: true

[regular]

power: 10

promotion.name: Regular

promotion.next: trusted

promotion.timer: 30

ftbutilities.chat.name_format: <&9Regular &r{name}>

command.ftbutilities.home: true

This script removes all items from world every 30 minutes. Only works in 1.12.

Clearlag 1.12

// Create item whitelist filter that won't be deleted with clearlag

var whitelist = Ingredient.matchAny([

 'minecraft:diamond', // Adds diamond to whitelist

 'minecraft:gold_ingot',

 '@tinkersconstruct', // Adds all items from tinkerscontruct to whitelist

 'minecraft:emerald'

])

// Create variable for last clearlag result

var lastClearLagResult = Utils.newList()

// Create variable for total number of items

var lastTotalClearLagResult = Utils.newCountingMap()

// Create new function that clears lag

var clearLag = server => {

 // Get a list of all entities on server with filter that only returns items

 var itemList = server.getEntities('@e[type=item]')

 // Create new local map for item counters

 var lastResult = Utils.newCountingMap()

 // Clear old result lists

 lastClearLagResult.clear()

 lastTotalClearLagResult.clear()

 // Iterate over each entity in itemList and add item counters

 itemList.forEach(entity => {

 if (!whitelist.test(entity.item)) {

 // Get the name of item

 var key = entity.item.name

 // Add to entity count

 lastResult.add(key, 1)

 // Add to total item count

 lastTotalClearLagResult.add(key, entity.item.count)

 // Kill the item entity

 entity.kill()

 }

 })

 // Update and sort last result list

 lastClearLagResult.addAll(lastResult.entries)

 lastClearLagResult.sort(null)

 // Tell everyone how many items will be removed

 server.tell([

 Text.lightPurple('[ClearLag]'),

 ' Removed ',

 lastTotalClearLagResult.totalCount,

 ' items. ',

 Text.yellow('Click here').click('command:/clearlagresults'),

 ' for results.'

])

}

// Listen for server load event

events.listen('server.load', event => {

 // Log message in console

 event.server.tell([Text.lightPurple('[ClearLag]'), ' Timer started, clearing lag in 30

minutes!'])

 // Schedule new task in 30 minutes

 event.server.schedule(MINUTE * 30, event.server, callback => {

 // Tell everyone on server that items will be removed

 callback.data.tell([Text.lightPurple('[ClearLag]'), ' Removing all items on ground in one

minute!'])

 // Schedule a subtask that will clear items in one minute

 callback.data.schedule(MINUTE, callback.data, callback2 => {

 clearLag(callback2.data)

 })

 // Re-schedule this task for another 30 minutes (endless loop)

 callback.reschedule()

 })

})

// Doesnt work in 1.16+!

// Register commands

events.listen('command.registry', event => {

 // Register new OP command /clearlag, that instantly runs clearlag

 event

 .create('clearlag')

 .op()

 .execute(function (sender, args) {

 clearLag(sender.server)

 })

 .add()

 // Register new non-OP command /clearlagresults, that displays stats of all removed items

from previous /clearlag

 event

 .create('clearlagresults')

 .execute((sender, args) => {

 sender.tell([Text.lightPurple('[ClearLag]'), ' Last clearlag results:'])

 lastClearLagResult.forEach(entry => {

 var total = lastTotalClearLagResult.get(entry.key)

 if (entry.value == total) {

 sender.tell([Text.gold(entry.key), ': ', Text.red(entry.value)])

 } else {

 sender.tell([Text.gold(entry.key), ': ', Text.red(entry.value), ' entities, ',

Text.red(total), ' total'])

 }

 })

 })

 .add()

})

At server load, you can schedule anything to happen at later time. Within callback handler you can
also call callback.reschedule() to repeat this event after initial timer or
callback.reschedule(newTime) to change it.

Whatever you pass as 2nd argument will be returned in callback as data .

The example script restarts server after 2 hours but notifies players 5 minutes before that.

Scheduled Server Events

onEvent('server.load', function (event) {

 event.server.schedule(115 * MINUTE, event.server, function (callback) {

 callback.data.tell('Server restarting in 5 minutes!')

 })

 event.server.schedule(120 * MINUTE, event.server, function (callback) {

 callback.data.runCommand('/stop')

 })

})

Sometimes, you might want to run a command (such as /tell @a Hi!), in your code.

Most always, there is better method, but sometimes, you just don't want to learn more complicated
topics, and just run a command.

The most basic usage would be to call runCommand() from a server class.

 So instead you can use the following to not log these messages.

To get around this, you can use the execute command:

Running Commands
Preface

Basic Usage

Utils.server.runCommand(`tell @a Hi!`)

If this command returns a message (usually an error) that is normally placed chat, it will be
logged. This is not desired outside of debugging situations.

Utils.server.runCommandSilent(`tell @a Hi!`)

If the server is not loaded at the time this is ran, then the code will not work.

Although you can use player.runCommandSilent() , it is not recommend as the command runs
with the players permission level.

Using the execute command

Commands are ran in the default dimension (the overworld usually) at 0, 0, 0

//This example makes a bedrock box around creepers when they spawn

onEvent('entity.spawned', event => {

	if (event.entity.type != "minecraft:creeper") return // the following code only runs when

creepers are spawned

	event.server.runCommandSilent(`execute in ${event.entity.level.dimension} positioned

${event.entity.x} ${event.entity.y} ${event.entity.z} run fill ~-1 ~-1 ~-1 ~1 ~2 ~1 bedrock

hollow`)

})

Spawning entities consists of 3 steps:

Making the variable storing the future entity
Modifying the attributes of the entity
Spawning the entity

let
Indicate that we are making a new variable and get the game ready to store it.
Not required in 1.16.

myEntity
This is the name of the variable.
Can be anything you chose that is a-Z,0-9 without spaces (you know like any other
variable).

=
sets myEntity to what is about to follow.

level
This is any level object that you choose.
This can be obtained numerous ways and will depend on what you are trying to do.

Spawning Entities
Basics
Overview

Making a variable to store the entity
Example

level is just a placeholder, in your code it needs to be defined, for many events you can use
event.level in place of level and it will work

You can create a entity from a block instead of level, and this is often preferred to learn
that, scroll to that section afterward

let myEntity = level.createEntity("cow")

Breaking down the example

In many events you can use event.level to get the level.
Note: this is a LevelJS object, not a minecraftLevel object.

minecraftLevel.asKJS() returns a LevelJS.
.

The dot operator either
Gets a property of the object.
Calls a method of the object.
Calls a beaned method of the object.

In this case it is used to call the method createEntity . You can tell because the
following parenthesis mean its a method.

createEntity(...)
As mentioned above is the method called by the dot operator

"cow"
this is the name of the entity
"minecraft:cow" or "create:potato_projectile" are also valid

in fact when you put a resource location without a prefix, then minecraft: will
be assumed.

myEntity
Gets the variable that was made earlier.

.
The dot operator mentioned earlier.

motionY = 0.1
Instead of being a method, like last time, this is a beaned method.
This means that there exists a method setMotion and under the hood it runs
setMotionY(0.1) that is automatically called with this code.
In this case it sets the motionY property of the entity.

You many not change arbitrary bits of NBT this way! Only bits that there is a
method for. In the example, all of the lines are just running beaned methods.
However, you can do it with a different method, listed in a different section
below.

Modifying the properties
Example

myEntity.x = 0

myEntity.y = 69

myEntity.z = 0

myEntity.motionY = 0.1

myEntity.noGravity = true

Breaking Down the Example

With understanding from the previous sections you should be able to figure out what this does.

It get myEntity, then calls the method .spawn().

This spawn() method creates the entity in the world.

You can also call createEntity from a block! This is handy if you want to spawn the entity in the
position of a block.

This code offsets the entity to be in the center of the block.

You can set the NBT to whatever you want! It's recommend using mergeFullNBT to do this.

Spawning the entity
Example

myEnity.spawn()

Note: myEntity is still a variable! So you may not use let myEntity again within the scope!
However this variable is still linked to the entity so calling myEntity.motionY = 0.1 will still set
the vertical motion of the entity. (This can be a useful thing, but bad if you are unaware)

Creating the entity from a block

let myEntity = block.createEntity("cow")

Again, block is just a place holder, you will need to change it to something else like maybe
event.block for your code to work!

This does not spawn the entity in the center of the block, it just sets the entity's coordinates
to that of the block, thus being misaligned

let myEntity = block.createEntity("cow")

myEntity.x+=0.5

myEntity.y+=0.5

myEntity.z+=0.5

Setting NBT

There are two ways to create item entities in KubeJS.

If you want to easily create the item from a certain block then you can use the popItem method.

The item can be an Item.of() instead if you wish

Creating an item entity with a little more control be done identically to any other entity, except you
get a couple more methods.

myEntity.withNBT({VillagerData:{}})

myEntity.fullNBT.VillagerData = {} will not work, because .fullNBT is a beaned method, not
a property! The only thing that the beaned method lets do is to be able to use let nbt =
myEntity.fullNBT to set a variable to NBT to be read or use myEntity.fullNBT = {} to set all of
it at once.

Note it is fullNBT not nbt, because kubejs uses nbt for a different purpose. A bit confusing,
but it is what it is.

Item Entities

popItem

Example

block.popItem('minecraft:diamond')

createEntity("item")

Example

let itemEntity = block.createEntity("item")

itemEntity.y+=0.8

itemEntity.x+=0.5

itemEntity.z+=0.5

itemEntity.item = Item.of("encahanted_book").enchant("thorns",2)

itemEntity.item.count = 1

itemEntity.pickupDelay = 600

itemEntity.noGravity = true

itemEntity.motionY = 0.08

In this example

the .item beaned method is used to set the item of the item stack (Required)
the .pickupDelay beaned method is used to set the pickup delay (Optional)

Spawns an endermite when braking dirt with a 5% chance

Turns gravel to sand and drops clay when right clicked with flint

Overrides enchanting table behavior when clicking on it with an item in you hand. Instead will
make the item float up a while, then fall back down.

itemEntity.spawn()

Examples

onEvent("block.break", event => {

	if (event.block.id != "minecraft:dirt" || Math.random() > 0.05) return

 	//only if its dirt and only has 5% chance

 	let myEndermite = event.block.createEntity("endermite")

 	myEndermite.x += 0.5

 	myEndermite.y += 0.5

 	myEndermite.z += 0.5

 	myEndermite.spawn()

})

onEvent('block.right_click', event => {

 if (event.block.id == 'minecraft:gravel' && event.item.id == 'minecraft:flint') {

 event.block.set('sand')

 event.item.count--

 event.block.popItem('clay')

 }

})

onEvent('block.right_click', event => {

 if (event.block.id !='minecraft:enchanting_table') return

 if (event.item.count == 0) return

 	event.cancel()

 let item = event.item.copy()

 //if did not use .copy() the item would still be referencing the one in the hand, so

setting the count to 1 would set the count in the hand to 1

 item.count = 1

 	event.item.count--

 	

 let itemEntity = event.block.createEntity('item')

 itemEntity.y+=0.8 // on the top of the encahnting table, not in it

 itemEntity.x+=0.5

 itemEntity.z+=0.5

 itemEntity.item = item

 itemEntity.item.count = 1

 itemEntity.pickupDelay = 100

 itemEntity.noGravity = true

 itemEntity.motionY = 0.08

 itemEntity.spawn()

 	

 	function callback (i) {

 	//changes the scope of itemEntity (otherwise if used 2 times in a row within 5 seconds,

problems would occur)

 	event.server.scheduleInTicks(100, callback => { // this code runs 5 seconds later

 		i.noGravity = false

 	})

 }

 	callback(itemEntity)

})

